Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас
Шрифт:
Интервал:
Закладка:
Kelley, D. S., Karson, J. A., Blackman, D. K., et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. // Nature 412: 145–149 (2001).
Kelley, D. S., Karson, J. A., Früh-Green, G. L., et al. A serpentinite-hosted submarine ecosystem: the Lost City Hydrothermal Field // Science 307: 1428–1434 (2005).
Пиритный пуллинг и железосерный мир
Duve, C. de, and S. Miller Two-dimensional life? // Proceedings National Academy Sciences USA 88: 10014–10017 (1991).
Huber, C., and G. Wäctershäuser Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions // Science 276: 245–247 (1997).
Miller, S. L., and J. L. Bada Submarine hot springs and the origin of life // Nature 334: 609–611 (1988).
Wäctershäuser, G. Evolution of the first metabolic cycles // Proceedings National Academy Sciences USA 87: 200–204 (1990).
Wäctershäuser, G. From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya // Phil. Trans. R. Soc. B 361: 1787–1806 (2006).
Щелочные гидротермальные источники
Martin, W., Baross, J., Kelley, D., and M. J. Russell Hydrothermal vents and the origin of life // Nature Reviews Microbiology 6: 805–814 (2008).
Martin, W., and M. J. Russell On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells // Phil. Trans. R. Soc. B 358: 59–83 (2003).
Russell, M. J., Daniel, R. M., Hall, A. J., and J. Sherringham A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life // Journal of Molecular Evolution 39: 231–243 (1994).
Russell, M. J., Hall, A. J., Cairns-Smith, A. G., and P. S. Braterman Submarine hot springs and the origin of life // Nature 336: 117 (1988).
Russell, M. J., and A. J. Hall The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front // Journal Geological Society London 154: 377–402 (1997).
Серпентинизация
Fyfe, W. S. The water inventory of the Earth: fluids and tectonics // Geological Society of London Special Publications 78: 1–7 (1994).
Russell, M. J., Hall, A. J., and W. Martin Serpentinization as a source of energy at the origin of life // Geobiology 8: 355–371 (2010).
Sleep, N. H., Bird, D. K., and E. C. Pope Serpentinite and the dawn of life // Phil. Trans. R. Soc. B 366: 2857–2869 (2011).
Химия катархейских океанов
Arndt, N., and E. Nisbet Processes on the young Earth and the habitats of early life // Annual Reviews Earth Planetary Sciences 40: 521–549 (2012).
Pinti, D. The origin and evolution of the oceans // Lectures Astrobiology 1: 83–112 (2005).
Russell, M. J., and N. T. Arndt Geodynamic and metabolic cycles in the Hadean // Biogeosciences 2: 97–111 (2005).
Zahnle, K., Arndt, N., Cockell, C., Halliday, A., Nisbet, E., Selsis, F., and N. H. Sleep Emergence of a habitable planet // Space Science Reviews 129: 35–78 (2007).
Термофорез
Baaske, P., Weinert, F. M., Duhr, S., et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems // Proceedings National Academy Sciences USA 104: 9346–9351 (2007).
Mast, C. B., Schink, S., Gerland, U., and D. Braun Escalation of polymerization in a thermal gradient // Proceedings National Academy Sciences USA 110: 8030–8035 (2013).
Термодинамика синтеза органических веществ в щелочных источниках
Amend, J. P., and T. M. McCollom Energetics of biomolecule synthesis on early Earth / In: Zaikowski, L., et al., eds. Chemical Evolution II: From the Origins of Life to Modern Society. American Chemical Society (2009).
Ducluzeau, A.-L., Schoepp-Cothenet, B., Baymann, F., Russell, M. J., and W. Nitschke Free energy conversion in the LUCA: Quo vadis? // Biochimica et Biophysica Acta Bioenergetics 1837: 982–988 (2014).
Martin, W., and M. J. Russell On the origin of biochemistry at an alkaline hydrothermal vent // Phil. Trans. R. Soc. B 367: 1887–1925 (2007).
Shock, E., and P. Canovas The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems // Geofluids 10: 161–192 (2010).
Sousa, F. L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I. A. C., Allen, J. F., Lane, N., and W. F. Martin Early bioenergetic evolution // Phil. Trans. R. Soc. B 368: 20130088 (2013).
Восстановительный потенциал и кинетический барьер восстановления CO2
Lane, N., and W. Martin The origin of membrane bioenergetics // Cell 151: 1406–1416 (2012).
Maden, B. E. H. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism // Biochemical Journal 350: 609–629 (2000).
Wäctershäuser, G. Pyrite formation, the first energy source for life: a hypothesis // Systematic and Applied Microbiology 10: 207–210 (1988).
Могут ли природные протонные градиенты инициировать восстановление CO2?
Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J. R. G., and N. Lane An origin-of-life reactor to simulate alkaline hydrothermal vents // Journal of Molecular Evolution 79: 213–227 (2014).
Herschy, B. Nature’s electrochemical flow reactors: Alkaline hydrothermal vents and the origins of life // Biochemist 36: 4–8 (2014).
Lane, N. Bioenergetic constraints on the evolution of complex life // Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a015982 (2014).
Nitschke, W., and M. J. Russell Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo, Co, S and Se forced life to emerge // Journal of Molecular Evolution 69: 481–496 (2009).
Yamaguchi, A., Yamamoto, M., Takai, K., Ishii, T., Hashimoto, K., and R. Nakamura Electrochemical CO2 reduction by Nicontaining iron sulfides: how is CO2 electrochemically reduced at bisulfide-bearing deep sea hydrothermal precipitates? // Electrochimica Acta 141: 311–318 (2014).