Книги онлайн и без регистрации » Домашняя » Нанонауки. Невидимая революция - Лоранс Плевер

Нанонауки. Невидимая революция - Лоранс Плевер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 41
Перейти на страницу:

Но что делать уже на следующем этапе (транзисторы величиной 32 нм), инженеры не знают. Можно бы опять уменьшить длину волны, но это потребует фотолитографии, способной работать в диапазоне крайнего ультрафиолета (длина волны 13,5 нм). Иначе говоря, понадобится сверхмудреная и соответственно очень дорогая оптика, чтобы фокусировать такие лучи и освещать ими поверхность полупроводника. Волны еще короче — это уже рентгеновское излучение: казалось бы, здорово — волны длиной порядка 1 нм. Но для таких коротких волн все прозрачно — из чего тогда делать маску? А оптику? Что это за линзы должны быть, чтобы управляться со столь коротковолновым — и жестким, то есть разрушающим вещество, особенно живое, — излучением?

Вместо рентгеновских лучей можно бы использовать пучки электронов: если электроны как следует разогнать, то длины волн тоже могут быть сколь угодно малыми. Электронная литография известна с 1960 года, тогда Готфрид Молленштедт в Тюбингенском университете в Германии воспользовался потоком электронов вроде тех, что применяются в электронных микроскопах, чтобы нанести на поверхность смолы тоненькие риски: он сумел нарисовать логотип своего университета штрихами длиной порядка 100 нм. Происходит, в сущности, то же самое, что и в оптической литографии: на полимерную пленку обрушивается поток электронов, и в пленке происходят химические изменения. Чтобы обнаружить эту перемену, достаточно обработать пленку растворителем — облученные участки смоются, те же, что не подвергались облучению, уцелеют, и, значит, появится задуманный узор. Пока что электронная литография применяется в производстве масок для фотолитографии, а в продвинутых исследовательских лабораториях и для изготовления самых маленьких транзисторов в мире — с расстояниями между входом и выходом в 20, 15 и даже 9 нм! Словом, пресловутая иголка в стоге сена! Причем сами эти транзисторы не остаются на поверхности полупроводника, а норовят вырасти над нею — получается что-то вроде россыпи грибов. Кучка таких новых транзисторов похожа (под микроскопом) на скопление лисичек или шампиньонов.

ВОТ И ПРЕДЕЛ

Но и этого мало — ученые просто жаждут изготавливать все меньшие и меньшие транзисторы. Хорошо бы, чтобы эти малюсенькие штучки еще и работали, сразу и надежно. Но чем больше транзисторов получалось за раз на одной пластинке, тем большая доля из их выводка оказывалась заведомо негодной — как говорится, вероятность дефектности возрастала. Инженерам не оставалось ничего другого, как пустить в дело сокровища ноу-хау и изобрести множество хитроумных технических уловок, чтобы обойти или перескочить препоны, мешавшие дальнейшей миниатюризации.

Среди прочих затруднений сильно докучала необходимость соединять транзисторы друг с другом. Если применять металлические проводники, то уже сегодня на 1 см2 полупроводниковой поверхности надо было бы как-то разместить 6 км медных или золотых «проводков», точнее, дорожек. По мере продвижения миниатюризации соединительные дорожки, формировавшиеся из алюминия, стали такими тонкими, что электронная волна (а электрический ток — это поток электронов) просто сносила атомы алюминия с насиженных мест и уносила их с собой. Атомы проводника становились блуждающими — и потому это явление называется электромиграцией. К тому же получать сверхчистый металл, например алюминий, трудно: в нити диаметром в нанометры и длиной в километры обязательно встретятся какие-то загрязненные участки, да и сама нить будет не сплошным кристаллом, а цепочкой металлических зерен. Значит, сопротивление электрическому току будет на разных участках нити неодинаковым — словно на границах между зернами и там, где есть включения иных химических элементов, кто-то установил резисторы. Электрическое поле будет особенно агрессивным на таких неоднородных участках, а если вымытых атомов станет слишком много, то в металлической дорожке появится не просто неоднородность, но пробел и ток не сможет течь. Иначе говоря, дорожка порвется. Справиться с электромиграцией удалось в 2001 году: алюминий заменили медью[11], которая не так подвержена электромиграции и вдобавок лучше проводит электрический ток. Иначе говоря, эта замена (для которой потребовалось 15 лет исследований и экспериментов) еще и сильно ускорила перемещение электронов внутри интегральных схем.

Задача производства 65-нанометровых транзисторов натолкнулась еще на одно затруднение. При таких размерах слой изоляции, накладываемый поверх транзистора и отделяющий управляющий электрод от полупроводникового «канала» (он соединяет вход транзистора с его выходом), становится не толще 1,2 нм. Следовательно, это всего пять-шесть слоев атомов. Значит, изоляция становится ненадежной, и электроны вполне могут просочиться с управляющего электрода в канал: транзистор «даст течь». А чем больше такая утечка, тем меньше сопротивление изолирующего слоя и попутно напряженность электрического поля между управляющим электродом и каналом. А это поле управляет транзистором: по мере его усиления или ослабления канал транзистора открывается или запирается. Если поле ненадежно, то и управлять потоком электронов внутри транзистора невозможно.

Обычно для изоляции используют оксид кремния (кремнезем). Это очень хороший изолятор — если нанести его достаточно толстым слоем. В нашем случае это невозможно, поэтому хорошо бы найти изолятор получше. Меньшая электропроводность у оксидов редкоземельных элементов, например у оксида гафния. Его применение уменьшило утечки в 10 раз. Однако любая перемена влечет за собой целую вереницу последствий. Оказалось, среди прочего, что оксид гафния плохо уживается с металлом, из которого изготовлены электроды транзистора, так что пришлось искать подходящий металлический сплав.

Само явление тока утечки имеет квантовую природу и объясняется квантовыми свойствами электрона. Эти свойства начинают проявляться как раз на расстояниях, меньших 65 нм. Пока инженеры, разрабатывавшие новые транзисторы, не дошли до этого предела, им не было нужды думать о квантах и квантовых эффектах. Но теперь без раздумий о подобных предметах обойтись было нельзя. Зато, научившись как-то справляться с квантовыми эффектами, инженеры смогли создать новые приборы и инструменты, работающие на расстояниях в 10-100 нм и имеющие размеры того же порядка. Это уже были не транзисторы — в новинках были задействованы иные квантовые явления. Но давайте сначала поглядим, как методы, выработанные в производстве микроэлектроники, вышли за границы электроники и начали распространяться совсем в иных технологических областях.

ЗАРАЗА МИНИАТЮРИЗАЦИИ

Итак, неуемная миниатюризация оторвалась от электроники и вторглась в другие уделы. Ее нашествие всегда и повсюду сопровождалось немалой сумятицей: много волнений, например, вызвала ее атака на механику. Станки и машины, предназначенные для производства деталей посредством точения, фрезерования и сверления, дошли до предела точности. Еще удавалось изготавливать прекрасные детали с допуском порядка одного микрометра, но двигаться дальше, казалось, уже некуда. В 1980-е годы в Калифорнийском университете оптимизацией обработки оксида кремния занимался Рихард С. Мюллер — он искал способы введения изоляторов в интегральные схемы. Знакомство с фотолитографией подсказало ему мысль о новом методе формирования микродорожки: пластинка кремния покрывается слоем оксида кремния и на поверхности этого оксидного слоя рисуется дорожка, которая потом гравированием врезается в собственно кремниевую пластинку. Из этой разработки родилась вся кремниевая микромеханика: процедуры, освоенные микроэлектроникой, вытеснили все привычные процессы, и детали, производимые методами микромеханики, стали совсем крошечными, и, главное, резко повысилась точность допусков и посадок. Размеры деталек съежились с величин порядка 100 мкм до считаных микрометров, а допуск точности уменьшился До нескольких нанометров. Потом из кремниевой микромеханики родились так называемые «микроэлектромеханические системы» (МЭМС — MEMS), под которыми подразумевались механические элементы (датчики, исполнительные механизмы и пр.) собственно электроники: эти устройства или принимают какой-то (не электрический) сигнал, или подают (электрическую) команду механическим элементам. И микроэлектронная промышленность начала производить МЭМС в количествах, сравнимых с количествами произведенных транзисторов, и при этом с малыми издержками.

1 ... 5 6 7 8 9 10 11 12 13 ... 41
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?