Нанонауки. Невидимая революция - Лоранс Плевер
Шрифт:
Интервал:
Закладка:
Итак, электрон — одновременно и волна и частица. Эта идея вызвала настоящую бурю в физике твердого тела: оказалось, что с приближением одного из трех размеров объема твердого тела (длины, ширины или высоты) к длине волны, ассоциируемой с электроном, начинают проявляться квантовые эффекты. Они заметны уже в крупных транзисторах, но там подобные феномены смазывались большим количеством атомов: квантово-волновые явления, производимые отдельным атомом, складывались с такими же явлениями, генерируемыми другими атомами, и часто гасили друг друга, так что на суммарный эффект можно было не обращать внимания. Это похоже на большой оркестр, в котором каждый инструмент выводит свою ноту независимо от других инструментов; в результате получается не мелодия, а какой-то беспорядочный шум, даже не обязательно громкий.
В очень маленьких устройствах не так: квантовые явления уже не компенсируют друг друга. Из их изучения родилось новое направление — мезоскопическая физика. Размеры подобных приборчиков находятся в пределах от нескольких десятков до нескольких сотен нанометров. Значит, они где-то в промежутке между атомными и макроскопическими расстояниями, отсюда приставка мезо-, посредине, а счет атомов идет на миллионы. Следовательно, в мезофизике квантовые волны электронов (или ассоциированные с электронами) еще путаются, то есть гасят («маскируют») друг друга. Однако здесь, в отличие от макроскопического оборудования, один из факторов путаницы уже не действует. В итоге, когда величина прибора становится меньше свободного пробега электронов (так называется среднее расстояние, преодолеваемое электроном за время между двумя столкновениями), вероятность столкновения с вибрациями атомов падает, словно бы у электронов не остается времени на взаимодействие с себе подобными. И эти колебания атомов уже не компенсируют друг друга, а выступают единым фронтом: словно бы есть одна-единственная волна, колебание, соответствующее большому количеству электронов, — как будто бы из душераздирающей какофонии расстроенного оркестра родился некий аккорд, силы которого хватило, чтобы заставить все инструменты оркестра звучать в унисон.
Углеродные нанотрубки обозначили границу между этой мезоскопической физикой и нанофизикой, до которой мы еще не добрались, а сделаем мы это в следующей главе.
В 1991 году были открыты трубочки из углерода диаметром от нескольких нанометров до десятков нанометров. Длина нанотрубки может доходить до нескольких микрон. Формируются они из листочков графита, которые скручиваются сами, примерно так, как скручиваются блинчики на сковородке. Как только их обнаружили, так сразу же многие стали облизываться на этакое чудо: трубочки оказались очень прочными, имели свойства проводников или полупроводников, как уж получится, и отличались повышенной теплопроводностью. Исследователи спешили проверить, а не получится ли из нанотрубки проводник в микросхеме или канал транзистора нового типа. Электронов в трубке много, а длина ее намного (в тысячи раз) превышает ее диаметр, и потому электрический ток циркулирует по всем классическим правилам: выполняется закон Ома! Вовсе не так обстоят дела в сечении трубки, ведь в ее диаметр уложится всего лишь несколько длин электронных волн. Значит, чтобы понять электронные качества углеродной нанотрубки, надо в одно и то же время учитывать как классические свойства, так и квантовые выходки электронов проводимости, то есть тех электронов, которые есть в трубке.
Устройства иного рода, механические, так называемые протеиновые двигатели, тоже оказались на границе между мезо- и нанофизикой. Протеиновый двигатель — это такое нагромождение белков, которое в клетках превращает химическую энергию в работу. В любом белке белкового двигателя тысячи атомов. Местонахождением этих атомов в пространстве ведают законы квантовой физики. Любой химической связи в белке соответствует колебание некоторого рода и, значит, некая квантовая волна. Поскольку белок — это множество химических связей, по-разному вибрирующих, то все квантовые волны, соответствующие каждому из колебаний каждой химической связи, никак не проявляются в суммарном движении белка. Как и в твердом теле, квантовые волны колебаний накладываются друг на друга — и гасятся, «смазываются». Механические свойства деформируемого белка выглядят почти классическими: белковая молекула может вращаться или перемещаться, совершая движения в пространстве. Нагромождение белков, образующих протеиновый двигатель, будет совершать вращательное движение, выглядящее классическим, что уже наблюдалось в предварительных экспериментах, в которых подобные двигатели испытывались «в пробирке» (in vitro).
Итак, нельзя путать мезоскопическую физику с нанофизикой. Нанофизика имеет дело с приборами, построенными из десятков атомов, причем гашение, компенсация квантовых волн, или отсутствует, или контролируется (то есть может быть учтено), а то и вносится извне — из окружающей среды. Об этом пойдет речь в следующей главе. Однако, как это почти всегда бывает с разграничением научных уделов, и в этом случае возникли раздоры между исследователями (см. Приложение II). Для приверженцев нисходящего подхода, опускавшихся к мезофизике дорогой микроминиатюризации, в частности в электронике, нанофизика начиналась там, где обнаруживались квантовые свойства вещества. Для тех, кто предпочитал восходящий подход, стартовавший с поодиночной манипуляции атомов, нанофизика начиналась там, где можно отличать один атом прибора от другого атома того же устройства, и заканчивалась там, где атомов становилось так много, что их волны, накладывающиеся друг на друга, превращались в трудноразличимый беспорядок, в котором уже невозможно опознавать «отдельные» квантовые явления.
ГОВОРИТЕ, «МЕЗО»?
В совсем крошечном транзисторе ток утечки укладывается в рамки квантового явления, известного как туннельный эффект (упоминавшийся выше туннельный микроскоп работает на этом же эффекте): электронов так много, что все они описываются одной-единственной квантовой волной. В квантовом мире волну, связываемую с некоторой частицей, нельзя резко остановить на границе между двумя средами: сохраняется некоторая непрерывность волн (волна переходит, пусть с искажением, из одной среды в другую). То есть электроны, находящиеся в одной среде, могут оказаться по другую сторону границы между средами — иначе говоря, вероятность их обнаружения там отлична от нуля. Например, мы знаем, что эти вот электроны должны быть, скажем, по левую сторону границы, но они вполне могут оказаться на правой стороне — и это нормально, нечего тут удивляться! Это похоже на то, как если бы кто-то из ваших знакомых научился проходить сквозь стены, минуя запоры и замки (и двери с окнами). Правда, умение проходить сквозь стены не выходит за пределы расстояний, измеряемых считаными нанометрами (да и научиться этому трюку может лишь электрон — или еще более мелкая элементарная частица). Если в том же нашем транзисторе слой, изолирующий управляющий электрод от активной части транзистора (канала), будет тоньше нанометра, то какие-то электроны с достаточно большой вероятностью будут перенесены благодаря туннельному эффекту через слой изоляции, а это значит, что между электродами транзистора и между электродами и каналом потечет ток утечки. И это «своеволие» электронов, выражающееся в беспорядочном «бегстве врассыпную», крайне неприятно. Для всякого нового поколения транзисторов приходится придумывать новый изолирующий материал, достаточно непрозрачный для квантовых электронных волн. К тому же транзистор работает тем лучше, чем больше площадь соприкосновения управляющего электрода с каналом. Но сила тока утечки также пропорциональна площади токопроводящих поверхностей. Налицо противоречие: чтобы увеличить действенность транзистора, следует увеличивать площадь соприкосновения (управляющего электрода с каналом), а для снижения тока утечки это соприкосновение следует свести к минимуму. Инженеры оказались в безвыходном тупике!