Критическая масса. Как одни явления порождают другие - Филип Болл
Шрифт:
Интервал:
Закладка:
Иногда экономисты приписывают рыночным силам очень высокую способность к стабилизации системы. Например, в соответствии с некоторыми теориями на рынке может быть достигнуто почти идеальное и сбалансированное состояние, при котором предложение и спрос будут подогнаны друг к друіу настолько точно, что рынок станет совершенно «ясным». В этом случае исчезнут многие сложности и излишние расходы, а товары будут использоваться с предельной пользой для общества в целом[76]. Для такого гипотетического состояния социологи даже используют специальный термин — «оптимум Парето» в честь придумавшего его итальянского экономиста и социолога Вильфредо Парето (1848-1923). По идее автора такое состояние должно было позволить капиталистической системе развиваться плавно и эффективно при условии отсутствия внешних факторов влияния и вмешательства государства в дела бизнеса. Можно лишь отметить, что даже при выполнении указанных условий достижение оптимума Парето можно считать практически невозможным.
В качестве удивительного математического «трюка» стоит выделить и разработанную французским экономистом Леоном Валрасом (1834-1910) концепцию формального обоснования рыночного равновесия, в результате чего возникла целая общая теория равновесия, оказавшая значительное влияние на развитие экономической мысли XX столетия. Интересно, что эта теория приобрела известность и успешно развивалась длительное время, несмотря на почти абсурдные постулаты автора относительно торговли и ее правил, которые практически никогда не могут быть удовлетворены и делают все дальнейшие теоретические построения бессмысленными. Успех этой теории доказывает, что поиски некоего Святого Грааля равновесия в экономике все еще продолжаются. Более того, среди сторонников таких теорий немало даже видных экономических советников правительства США, уверенных, что отсутствие регулирования экономики — максимальное освобождение рынка от ограничений и налогов — автоматически приводит к экономическому процветанию страны и росту доходов.
Особо следует отметить работы видного экономиста Джона Мэйнарда Кейнса (1883-1946), который, кстати, соглашался с идеей Маркса о том, что колебания являются врожденным внутренним свойством современной экономической системы. В 1930-х годах он предпринял серьезную попытку анализа цикличности спадов и подъемов, связывая их с процессами денежного обращения в системе. Кейнс указывал, что сила любой экономической системы определяется не только объемом ее капитала, но и путями перераспределения денег в ней. Например, даже в моменты экономической депрессии всегда имеется небольшое число сказочно богатых личностей, сосуществующих с массой обездоленных и безработных людей. Общественная проблема заключается в том, что в такие периоды богатые люди предпочитают накапливать деньги, а не инвестировать их в различные производства. Пока в экономической системе как-то текут и циркулируют деньги, она сохраняет свою жизнеспособность и подобно кораблю остается на плаву. Вложенные в производство капиталы повышают уровень занятости и благосостояния населения, что приводит к дальнейшему нарастанию торговли, капиталовложений, прибыли и т.д.
Кейнс предположил, что, когда люди начинают откладывать деньги про запас, а не тратить их на покупку товаров или вложения в промышленность, капитал просто перестает циркулировать в экономической системе, загоняя ее постепенно в состояние депрессии и спада. В предлагаемой Кейнсом модели бизнес должен постоянно расширять и усиливать поток капитала в системе, одновременно расширяя производство и сбыт товаров, т. е. экономическая стабильность зависит от динамичности развития. Читатель может вспомнить Красную Королеву из Алисы в Стране Чудес, которая должна была постоянно бежать, чтобы остаться на том же месте[77].
Обнаружение хаоса в экономических циклах обычно приписывают Ирвингу Фишеру, но в действительности честь его открытия принадлежит французскому математику Луи Башелье, который еще в 1900 году обратил вниманйе на то, что цены на товары и акции флуктуируют. Именно он показал, что в основе рыночной экономики лежат некие случайные процессы, но его имя практически не упоминается в учебниках экономики, поскольку Башелье был вовсе не экономистом, а физиком и учеником великого математика Анри Пуанкаре в Высшей политехнической школе. В докторской диссертации Башелье с необычным для математики названием «Теория спекуляций» предлагалась экономическая модель, основанная на чисто физических принципах и идеях. Его коллегам и современникам такой подход показался настолько необычным и даже странным, что работа осталась почти незамеченной и не была воспринята всерьез ни математиками, ни экономистами.
Между тем выдвинутые в диссертации Башелье идеи просто значительно опередили свое время. В попытке создать математическое описание случайных флуктуаций он даже попутно решил чрезвычайно важную для физики задачу о так называемых случайных блужданиях частицы. При этом Башелье на пять лет опередил самого Альберта Эйнштейна, прославившегося среди прочего решением именно задачи о броуновском движении, о чем рассказывалось в гл. 2. Направление движения частицы при случайных блужданиях меняется непредсказуемым образом, и Башелье предположил, что точно таким же образом меняется биржевой курс акций, т.е. ввел флуктуации в качестве «шума». В гл. 2 уже отмечалось, что такой случайный фон является мерой хаотичного движения, а его амплитуда соответствует температуре системы. Другими словами, существует характеристический «масштаб» случайных смещений частицы или других отклонений ее усредненных параметров.
Сейчас математики имеют хорошо разработанную методику изучения случайных блужданий, основанную на статистическом подходе. Действительно, тот факт, что никто не может предсказать точное направление движения в заданный момент времени, как уже ясно из предыдущего материала книги, вовсе не означает отсутствие всякого описания. Например, если бы мы могли нанести на отдельную частицу метку и проследить за ней достаточно долгое время, мы могли бы получить некий паттерн поведения, позволяющий построить, например, зависимость частоты появления флуктуации от ее размера.