Дао физики. Исследование параллелей между современной физикой и восточной философией - Фритьоф Капра
Шрифт:
Интервал:
Закладка:
Есть четыре основных закона сохранения, общие для всех процессов преобразования. Три из них связаны с простыми явлениями и относятся к пространственно-временной симметрии. Все взаимодействия частиц характеризуются симметричностью по отношению к переносам в пространстве: в Лондоне они происходят точно так же, как в Нью-Йорке. Они симметричны и в отношении переносов во времени: во вторник они протекают так же, как и в четверг. Первая симметрия порождает закон сохранения импульса, вторая — закон сохранения энергии. А суммарная величина импульса частиц, участвующего в каком-либо взаимодействии, и суммарное количество энергии, включающей их массы, будет полностью равным до начала взаимодействия и по его завершении. Третий базовый вид симметрии связан с ориентацией в пространстве. Смысл ее в том, что направление движения частиц, участвующих во взаимодействии (скажем, вдоль оси север-юг или запад-восток), никак не влияет на результат. Как следствие, суммарный момент импульса (состоящий из спинов отдельных частиц) всегда неизменен. Наконец, четвертый закон — закон сохранения электрического заряда. Он связан с более сложной симметрией (калибровочной инвариантностью), но его формулировка в качестве закона сохранения предельно проста: суммарный электрический заряд всех участвующих в столкновении частиц постоянен.
Есть еще несколько законов сохранения, связанных с симметриями в абстрактных математических пространствах, например закон сохранения электрического заряда. Некоторые соблюдаются во всех взаимодействиях, некоторые — только в определенных их видах (например, при сильных и электромагнитных взаимодействиях, но не слабых). Соответствующие постоянные заряды можно рассматривать как «абстрактные». Поскольку они всегда принимают «целые» (±1, ±2) или «полуцелые» (±1/2, ±3/2, ±5/2 и т. д.) значения, они получили название квантовых чисел, по аналогии с атомной физикой. Каждая частица характеризуется определенным набором квантовых чисел, которые вместе с массой полностью ее описывают.
Например, адроны характеризуются такими параметрами, как «изоспин» и «гиперзаряд». Эти два квантовых числа неизменны во всех сильных взаимодействиях. Если мы расположим восемь мезонов, перечисленных в табл. 3, в соответствии со значениями этих двух квантовых чисел, то получим гексагональную структуру, известную в современной физике под названием «мезонный октет» (рис. 55). Мы наблюдаем несколько осей симметрии: частицы и античастицы занимают в шестиугольнике противоположные позиции, а две частицы в центре — античастицы друг для друга. Аналогичную структуру образуют восемь самых легких барионов. Она носит название «барионный октет» (рис. 56). Отличие в том, что в последнем случае античастицы не входят в структуру, а образуют идентичный ей антиоктет. Последний, девятый барион из нашей таблицы, омега, вместе с девятью резонансами входит в другую структуру — «барионную десятку» (рис. 57). Все частицы, принадлежащие той или иной симметричной структуре, имеют одинаковые квантовые числа, за исключением изоспина и гиперзаряда, от которых зависит их расположение внутри структуры. Так, все мезоны в октете имеют нулевой спин (не вращаются совсем); барионы в октете имеют спин, равный 1/2, а в барионной десятке — 3/2.
Рис. 55. Мезонный октет
Рис. 56. Барионный октет
Рис. 57. Барионная десятка
Квантовые числа используются не только для классификации частиц и разделения их на «семьи» с четкими симметричными структурами и определения положения каждой частицы внутри соответствующей структуры, но и для классификации взаимодействий частиц в соответствии с действующими законами сохранения. Таким образом, два взаимосвязанных понятия — симметрии и сохранения — очень полезны при описании закономерностей мира частиц.
Поразительно то, что все эти закономерности выглядят гораздо проще, если мы примем, что все адроны состоят из небольшого числа элементарных единиц, которые до сих пор не были наблюдаемы непосредственно. Эти единицы получили причудливое название кварков. Термин был впервые использован Марри Гелл-Маном[227], который заимствовал это слово из романа Джеймса Джойса «Поминки по Финнегану»[228], где была такая строка: «Три кварка для Мустера Марка». Гелл-Ман применил его для обозначения постулированных им частиц. Ему удалось объяснить большое количество таких адронных структур, как описанные выше октеты и барионные десятки, приписав трем кваркам и их антикваркам соответствующие значения квантовых чисел и составляя из них, как из кирпичиков, сочетания, чтобы получить барионы и мезоны, квантовые числа которых складываются в сумму квантовых чисел составляющих их кварков. При этом предполагается, что барионы «состоят» из трех кварков, их античастицы — из стольких же антикварков, а мезоны — из сочетания кварка и антикварка.
Простота и эффективность этой модели удивительны, но, если рассматривать кварки как реальные физические составляющие адронов, мы неизбежно столкнемся с непреодолимыми трудностями. До сих пор попытки физиков обнаружить кварки путем бомбардировки адронов частицами — «снарядами» с высокой энергией — не привели к успеху. Это может значить только одно: кварки должны быть связаны между собой очень мощными силами. Наши текущие представления о частицах и их взаимодействиях предполагают, что за этими силами должен стоять обмен другими частицами, т. е. кварки имеют некую структуру, подобно всем остальным сильно взаимодействующим частицам. Но в модели Гелл-Мана кварки рассматриваются как точечные бесструктурные частицы. Из-за этого несоответствия физикам до сих пор не удается сформулировать кварковую модель как цельную и динамическую, что одновременно объяснило бы существующую в ней симметрию и связывающие силы.
В 1970-е экспериментальная физика устроила настоящую «охоту за кварком», которая не увенчалась успехом. Если отдельные кварки существуют, то они должны быть заметны: модель Гелл-Мана требует наличия у них необычных свойств, например электрического заряда, равного 1/3 или 2/3 заряда электрона, чего не наблюдается ни у каких других частиц. Но частиц с таким зарядом обнаружить не удавалось. Эти постоянные неудачи в сочетании с серьезными теоретическими возражениями против их существования обусловили сомнения в реальности кварков.