Книги онлайн и без регистрации » Домашняя » Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас

Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 49 50 51 52 53 54 55 56 57 ... 99
Перейти на страницу:

Я не разделяю эту точку зрения. Другая гипотеза – гипотеза необходимости – предполагает, что митохондрии сохранили свои гены потому, что нуждались в них: без них митохондрии просто не смогли бы существовать. Иными словами, причина, по которой гены остались в митохондриях, была абсолютно непреодолимой: переместить гены в ядро было принципиально невозможно. Почему невозможно? Я считаю, что наиболее убедительный ответ предложил биохимик Джон Аллен, с которым я долго сотрудничаю. Я доверяю его мнению не потому, что он мой друг – скорее наоборот: мы стали друзьями отчасти из-за того, что я поверил в его идею. Аллен, обладая деятельным умом, выдвинул множество оригинальных гипотез и десятки лет проверял их. О некоторых мы спорили годами. В пользу этой его гипотезы говорит множество аргументов, а заключается она в том, что митохондрии (как и хлоропласты) сохранили свои гены из-за необходимости контролировать хемиосмотическое сопряжение. Перенесите оставшиеся митохондриальные гены в ядро, – рассуждает Аллен, – и спустя некоторое время клетка умрет, как бы аккуратно ни были гены переставлены на новое место. Митохондриальные гены должны быть именно там, где они есть – рядом с биоэнергетическими мембранами, которые обслуживаются этими генами. Существует термин “бронзовый контроль”[77]. Во время войны “золотой контроль” возлагается на центральные органы власти, которые вырабатывают долгосрочную стратегию, “серебряный контроль” лежит на командовании вооруженными силами, которое занимается распределением солдат и вооружений, а на поле боя все зависит от “бронзового контроля” – мужчин и женщин, которые собственными руками побеждают врага, принимают решения, воодушевляют подчиненных и остаются в истории как великие воины. Так вот, митохондриальные гены – это “бронзовый контроль”, которому то и дело приходится принимать важные решения.

Почему такие решения необходимы? В гл. 2 мы обсуждали протон-движущую силу. Электрический потенциал внутренней мембраны митохондрии составляет примерно 150–200 милливольт. Поскольку толщина мембраны – всего 5 нанометров, это порождает напряженность электрического поля в 30 миллионов вольт на метр – как у вспышки молнии. Горе тому, кто потеряет контроль над таким электрическим зарядом! Расплатой будет не только остановка синтеза АТФ (хотя это само по себе очень серьезно). Если нарушится перемещение электрона по дыхательной цепи к кислороду (или к другим акцепторам электронов), это может привести к “короткому замыканию”, когда электроны реагируют с кислородом или азотом непосредственно с образованием высокоактивных свободных радикалов. Сочетание падения уровня АТФ, деполяризации биоэнергетических мембран и высвобождения свободных радикалов – классический триггер “запрограммированной клеточной смерти”. Выше я упоминал, что это явление широко распространено даже среди одноклеточных бактерий. По сути, митохондриальные гены реагируют на локальные изменения условий, в небольших пределах смещая мембранный потенциал, не позволяя его изменениям стать катастрофическими. Если переставить такие гены в ядро, то, скорее всего, в течение нескольких минут митохондрии просто потеряют контроль над мембранным потенциалом из-за изменений в количествах субстрата или кислорода либо из-за утечки свободных радикалов, и это приведет к гибели клетки.

Чтобы жить, мы должны непрерывно дышать. Нужно обеспечивать точную регулировку мышц диафрагмы, грудной клетки, горла. Она осуществляется и на более низком уровне: похожим образом регулируют дыхание и митохондриальные гены, заботясь, чтобы результат всегда соответствовал потребностям. Только эта причина достаточно важна, чтобы ею можно было объяснить сохранение генов в митохондриях.

Это более чем “необходимая” причина, в силу которой гены остались в митохондриях: нужно, чтобы эти гены были рядом с биоэнергетическими мембранами, где бы те ни находились. Поразительно, но у митохондрий неизменно сохраняются гены, принадлежащие к одному и тому же маленькому подсемейству, характерному для всех способных к дыханию эукариот. В тех редких случаях, когда клетки теряют сразу все митохондриальные гены, они теряют способность дышать. Гидрогеносомы и митосомы (специализированные органеллы, которые произошли от митохондрий и встречаются у архезоев) утратили абсолютно все гены – и в результате потеряли возможность пользоваться энергией хемиосмотического сопряжения. А у гигантских бактерий собственные гены (точнее, полные геномы) расположены совсем рядом с биоэнергетическими мембранами. На мой взгляд, наиболее показательный пример – это цианобактерии с их складчатыми внутренними мембранами. Если гены необходимы для контроля над дыханием, то цианобактерии должны иметь множество полных копий своего генома, как и гигантские бактерии – пусть цианобактерии и мельче. Так и есть: у наиболее сложных цианобактерий до нескольких сотен копий генома. Как и в случае гигантских бактерий, количество доступной энергии на ген у них ограничено: они не могут иметь геном, который хоть сколько-нибудь приближается по длине к ядерному эукариотическому, и вынуждены накапливать маленькие бактериальные геномы.

Вот причина, по которой бактерии не могут достичь размеров эукариот. Если просто переместить биоэнергетические мембраны внутрь и увеличить площадь их поверхности, это не сработает: нужные гены должны оказаться рядом с мембранами. В реальности же, не прибегая к эндосимбиозу, гены можно поместить туда лишь в составе полного генома. С позиции “энергии на ген” нет никакой пользы в том, чтобы увеличиваться в размерах: имеет смысл расти лишь для того, чтобы стал возможен эндосимбиоз. Лишь тогда можно будет терять гены, а сокращение генома митохондрий в несколько раз сделает возможным разрастание ядерного генома на порядки, вплоть до эукариотических размеров.

Можно рассмотреть и другую возможность: использовать бактериальные плазмиды – полуавтономные кольцевые ДНК, в некоторых случаях несущие огромное количество генов. Почему бы не разместить дыхательные гены на одной крупной плазмиде, а после расположить множественные копии этой плазмиды рядом с мембранами? С этим сопряжены трудноразрешимые логические проблемы, но может ли это в принципе работать? Я думаю, что нет. Сам по себе крупный размер не дает прокариотам преимуществ, и иметь избыточное количество АТФ бессмысленно. Маленькие бактерии не страдают от недостатка АТФ. Чуть больший размер и чуть больше АТФ не даст преимущества в конкурентной борьбе – лучше быть немного мельче, иметь достаточное количество АТФ и быстрее делиться. Второй недостаток самого по себе увеличения в размерах – это необходимость организовать пути доставки к удаленным регионам клетки. Большой клетке необходимо транспортировать грузы во все ее части, и эукариотам приходится делать именно это. Но такие транспортные системы появились не за один день: для этого потребовалось множество поколений, а в течение такого долгого времени крупный размер должен был давать какие-нибудь дополнительные преимущества. Поэтому плазмиды не подходят: идея выворачивается наизнанку. Гораздо более простое решение проблемы снабжения – создать множество копий полного генома, чтобы каждая контролировала небольшую часть объема цитоплазмы, равную объему одной бактериальной клетки – так, как у гигантских бактерий.

1 ... 49 50 51 52 53 54 55 56 57 ... 99
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?