У барной стойки. Алкогольные напитки как наука и как искусство - Адам Роджерс
Шрифт:
Интервал:
Закладка:
Арройо проводил свои исследования семьдесят пять лет назад, и до сих пор его работа остается стандартом для производства рома и изучения связанных с ним микроорганизмов. Если подумать, это довольно странно. Насколько мне известно, никто не пытался разобраться в микрофлоре, которая царит в ямах dunder pit, или поискать другие микроорганизмы – помимо рекомендованных Арройо. Ром – весьма недооцененный напиток, особенно те его странные темные разновидности с необычными эфирами. Но микроорганизмы, благодаря которым происходит брожение при его изготовлении, волнуют только его производителей – наука этим не интересуется.
В сусле «Напа Шардоне» можно найти семейства Firmicutes и Eu-rotiomycetes (последнее включает в себя грибы Aspergillus и Penicillium). В то же время в главном винодельческом районе на побережье Калифорнии культуры совсем другие: Bacteroides, Actinobacteria, Saccha-romycetes и Erysiphe necator. Вот так и получается, что у каждого сорта винограда есть собственные, отличные от других «поселенцы», отвечающие в конечном итоге за вкус и аромат продукта. Исследователи, которые занимались всем этим, называют такой огород «микробным терруаром».
Этанол и другие продукты метаболизма микроорганизмов – это не полный перечень составляющих продукта брожения. Кроме них, при брожении выделяется углекислый газ. То есть пузырьки. А пузырьки все меняют.
Пекари ценят дрожжи именно за их способность вырабатывать углекислый газ, который формирует в тесте маленькие полости, что делает хлеб легким и вкусным. Этанол испаряется, да пекарям он и не нужен. Все, кто использует брожение, – не только производители алкоголя, но и те, кто готовит квашеные овощи при помощи молочнокислых бактерий, – никак не контролируют выработку CO2. Вот почему, открывая банку с корейской маринованной капустой кимчи, стоит соблюдать осторожность: газ может так быстро выходить из раствора, что унесет с собой часть жидкости, и тогда вы окажетесь в луже ароматного острого рассола.
Углекислый газ имеет собственный вкус, который влияет на общий вкус напитка[211]. (При высоком парциальном давлении – то есть когда количество CO2 превышает количество других газов – углекислый газ воздействует на болевые рецепторы организма – ноцицепторы. Почти на каждом алкогольном производстве, которое я посещал, со мной пытались проделать один и тот же фокус: заставить заглянуть в бродильный чан во время финальной стадии брожения, когда свободное пространство над жидкостью целиком заполнено CO2. Если вы вдохнете этот газ, то боль будет такая, будто кто-то засунул вам в нос острую спицу. Если газа слишком много – можно вырубиться и свалиться прямо в чан с брагой. Умора!)
Во время брожения газ действительно стремится вырваться из жидкости. Некоторые производители улавливают его, а потом впрыскивают обратно в пиво[212]. Классическая же технология предписывает добавить в конечный продукт немного дрожжей и запечатать емкость. При вторичном брожении – «дображивании» – образуется CO2 и удаляется свободный кислород, который может придать пиву странный вкус, но при этом дрожжи могут привести к помутнению пива, а образующаяся взвесь часто воспринимается как грязь.
В вине, медовухе, саке и дистиллятах углекислый газ может отсутствовать, а может и сохраняться, и тогда напитки получаются слегка газированными. Но для двух конкретных напитков – игристого вина и пива – наличие CO2 является непременным атрибутом, важной составляющей их вкуса. При этом данные два вида алкоголя радикально отличаются друг от друга с точки зрения своих взаимоотношений с пузырьками.
В бутылке углекислый газ находится под давлением, которое удерживается крышкой или пробкой[213]. При высоком давлении он растворяется в жидкости, и никаких пузырьков мы не видим. Но если раскупорить бутылку и тем самым снизить давление, CO2 начнет выходить из раствора, образуя пузырьки. В игристых винах типа шампанского или просекко маленькие пузырьки выносят с собой на поверхность жирные кислоты и другие ароматные вещества. Добираясь до поверхности, они лопаются – на верхушке пузырька образуется отверстие, его края расширяются со скоростью около 35 километров в час, образуя кольцо высокого давления, которое врезается в область низкого давления на дне пузырька, впрыскивая коническую струю шампанского в свободное пространство над жидкостью[214], тем самым усиливая издаваемый напитком аромат (или хотя бы ускоряя его появление). А еще эти пузырьки вызывают щекотание в носу.
В бутылке пива содержание CO2 составляет 5 граммов на литр жидкости. Когда вы открываете бутылку пива или шампанского, раствор CO2 внутри нее становится перенасыщенным – то есть давление растворенного газа оказывается выше внешнего атмосферного давления. Поэтому CО2 должен выйти наружу. Он это делает при помощи пузырьков. Так, давление в бутылке шампанского в шесть раз выше атмосферного давления на уровне моря[215] – этого достаточно, чтобы пробка из шампанского вылетала со скоростью около 50 километров в час[216]. Впрочем, позволить пробке вылететь при открытии бутылки – не слишком изысканно и довольно опасно.
В идеальном случае лучше насладиться пузырьками в своем бокале, чем позволить им выплеснуться через горлышко бутылки. Чтобы это произошло, молекулы газа должны отыскать друг друга в жидкости и объединиться. Проблема в том, что молекулы жидкости держатся вместе[217]. Молекулы CO2 подобны влюбленным героям романтических комедий, которые за десять минут до конца фильма продираются сквозь толпу в аэропорту, а молекулы жидкости – это стоящие бок о бок люди в этой толпе.
Конечно, они найдут друг друга – мы же все смотрели такие фильмы. Но молекулы CO2 несколько умнее героев романтических комедий – у них есть заранее условленное место встречи: там, где есть отверстие определенного размера. В случае шампанского полости образуются на стенках бокала – размер этих полостей составляет 0,2 микрона и больше. Процесс формирования пузырьков называется зарождением, и в 2002 году физик Жерар Лигр-Белэйр из Университета Реймса во Франции решил пронаблюдать, как это происходит. Он установил камеру, способную различать объекты размером с микрометр – одну миллионную метра – и снимать со скоростью 3000 кадров в секунду[218], и направил ее на бокал шампанского.