Критическая масса. Как одни явления порождают другие - Филип Болл
Шрифт:
Интервал:
Закладка:
Возвращаясь к научной стороне вопроса, отметим, что если бы каждый растущий граф имел тенденцию только к увеличению числа связей на уже самых связных вершинах, то рост должен был бы закончиться вовсе не безмасштабной сетью, а централизацией всех связей на одной-единственной вершине. Однако это практически никогда не происходит в растущих без плана сетях, что и наводит на мысль о еще каком-то механизме регулирования. Например, можно сразу отметить, что в очень больших, разросшихся графах ситуация изменяется, поскольку новой вершине очень трудно «найти» наиболее связную вершину, вследствие чего повышается вероятность связи с одной из менее загруженных вершин. Это обстоятельство прекрасно иллюстрируется ситуацией в мире кино: самые известные звезды не в состоянии сниматься подряд во всех новых фильмах. Таким образом, стремление к созданию связей с наиболее связной вершиной сети выступает не правилом, а лишь тенденцией, вероятностным смещением развития в определенную сторону.
Барабаши и Альберт смогли показать, что эта тенденция — лишь одна из особенностей роста безмасштабных сетей. Они предложили рассмотреть граф, растущий за счет добавления новых вершин, каждая из которых связывается с уже имеющимися вершинами случайным образом, но с некоторым предпочтением, которое отдается при этом более связным вершинам. Как оказалось, при этом образуется безмасштабная сеть. Рост многих финансовых и общественных организаций происходит по принципу «богатые всегда становятся еще богаче». Например, более крупные фирмы с большей вероятностью (хотя и не всегда) привлекут новых клиентов, что, кстати, частично объясняется и тем, что они могут обеспечить себе лучшую рекламу, т.е. создать больше «славы».
Аналогия станет яснее, если учесть, что в некоторых случаях число связей вершины может быть непосредственно связано с «богатством», например, если рассматривать связность вершины в качестве показателя числа связанных с фирмой клиентов. Если в обществе существует свобода выбора, а возможности фирмы привлечь новых клиентов зависят от числа уже имеющихся клиентов, то степенное распределение неравенства станет весьма вероятным исходом. Конечно, на любом свободном рынке имеются различия, например, в доступности ресурсов для разных торговцев, но процесс безмасштабного роста будет быстрее усиливать неравенство участников по сравнению со случайным распределением богатства. Результатом такого развития может стать заметное число «особых случаев» — очень богатых индивидов или чудовищных по размеру компаний. Социолог Джордж Кингсли Ципф еще в 1930-х годах указывал, что почти всегда в общественных явлениях мы наблюдаем действие степенного закона распределения по размеру компаний (гл. 11), городов и доходов (гл. 10).
Из этого не следует, что степенной закон неравенства неизбежен при свободном рынке. Но если мы сочтем такое неравенство нежелательным, нам скорее всего придется несколько ограничить те самые свободы, на которых построена деятельность рынка.
Следует, однако, отметить, что подобный рост сетей далеко не всегда приводит к такому большому неравенству. Джен Стэнли из университета Бостона, изучив роль и возможности безмасштабных сетей, описанных Бара- баши и Альберт, обнаружил ограниченность их применимости. Возьмем для примера уже привычную сеть киноактеров. Степенной закон распределения предсказывает наличие нескольких знаменитостей с огромным количеством связей, однако это не так, количество связей даже наиболее востребованных актеров заметно ниже предсказанного теорией (рис. 16.7)[143].
Рис. 16.7. Киноактеры с наибольшим количеством связей не вписываются в степенную зависимость, характеризующую всех прочих актеров, — те из них, кто имеет более трехсот совместных работ, обладают существенно меньшим количеством связей, чем предсказывает степенной закон. Другими словами, существует верхний предел совместных работ, в которых может принимать участие актер.
Что ограничивает применимость степенного распределения вероятностей? Стэнли и его сотрудники уверены, что ограничения связаны с реальными жизненными обстоятельствами, лимитирующими предельные проявления такого распределения. Даже самый талантливый и трудолюбивый актер за короткий срок человеческой жизни не может сняться, например, в тысяче фильмов. Аналогично старые научные статьи, даже самые значимые, рано или поздно перестают упоминаться, это вовсе не означает истинного забвения, просто современные ученые не читают старые работы, а ссылаются на последние обзоры или учебники. Ограничена пропускная способность аэропортов, а цены и локальная демография кладут предел росту самих аэропортов. Если вершины имеют некоторый предел насыщения по связям или их способность образовывать новые связи уменьшается со временем (аналог возраста), то безмасштабность структуры перестает действовать для наиболее связных вершин.
При некоторых других ограничениях степенное распределение вообще отходит на второй план, так как определенные социальные обстоятельства делают ничтожной вероятность возникновения суперсвязных центров. В качестве примера можно привести энергосеть южной Калифорнии или мировую сеть аэропортов, связанных маршрутами авиационных перелетов. Более того, Стэнли и его коллеги показали, что аналогичная ситуация обнаруживается и при анализе некоторых реальных социальных сетей типа группы из 43 близких друзей, принадлежащих к секте мормонов в штате Юта (где такие связи имеют прочную и давнюю традицию), или нескольких сотен студентов университета Мэдисон в штате Висконсин. Все такие социальные сети описываются гауссовским распределением, т. е. обладают некоторым «усредненным» значением связности. Но одновременно они являются и сетями малых миров, так как им присущ свойственный таким сетям медленный рост характеристической длины пути при увеличении числа узлов.
Обобщая сказанное, можно констатировать, что мы имеем дело с несколькими типами объектов, объединенных общим названием малых миров. С самого начала придуманные Строгацем и Ваттсом малые миры обладали только «одним масштабом», связанным с предпочтительным значением средней связности узлов и резким падением числа узлов с высокой связностью. В качестве противоположного варианта образования таких систем появились предложенные группой Барабаши безмасштабные сети, в которых «жадные» или «неразборчивые в связях» узлы не имеют пределов роста, и могут образовываться узлы с очень большой связностью. Как говорил сам Барабаши, между этими двумя крайностями возник и развился «целый зоопарк различных типов социальных сетей»12. Независимо от точной топологии, сети малых миров почти никогда не формируются по плану или программе, а возникают сами собой в результате задаваемых законов соединения возникающих узлов с уже существующими.