Хлопок одной ладонью - Николай Кукушкин
Шрифт:
Интервал:
Закладка:
28. Schmidt-Nielsen, K. & Randall, D. J. Animal Physiology: Adaptation and Environment (Cambridge University Press, 1997).
29. Telford, M. J., Bourlat, S. J., Economou, A., Papillon, D. & Rota-Stabelli, O. The evolution of the Ecdysozoa. Philos Trans R Soc Lond B Biol Sci 363, 1529–1537, doi:10.1098/rstb.2007.2243 (2008).
30. Verberk, W. C. & Bilton, D. T. Can oxygen set thermal limits in an insect and drive gigantism? PLoS One 6, e22610, doi:10.1371/journal.pone.0022610 (2011).
31. Clapham, M. E. & Karr, J. A. Environmental and biotic controls on the evolutionary history of insect body size. Proc Natl Acad Sci USA 109, 10927–10930, doi:10.1073/pnas.1204026109 (2012).
32. Pittman, R. N. in Regulation of Tissue Oxygenation Ch. 4 (Morgan & Claypool Life Sciences, 2011).
ГЛАВА 7. КОГДА КОНЧАЕТСЯ СВЕТ
1. Alexander, R. M. Dinosaur biomechanics. Proc Biol Sci 273, 1849–1855, doi:10.1098/rspb.2006.3532 (2006).
2. Choo, B. Jurassic art: how our vision of dinosaurs has evolved over time, (2015).
3. Benton, M. J., Dhouailly, D., Jiang, B. & McNamara, M. The Early Origin of Feathers. Trends Ecol Evol 34, 856–869, doi:10.1016/j.tree.2019.04.018 (2019).
4. Quain, J. R. What Did T. Rex Look Like? A New Exhibit Has the 'Ultimate Predator' in Feathers, (2019).
5. Laurin, M. a. G., J. A. Diapsida. Lizards, Sphenodon, crocodylians, birds, and their extinct relatives, (2011).
6. Colbert, E. H. The Age of Reptiles (Dover Publications, 2012).
7. Carroll, R. L. The origin and early radiation of terrestrial vertebrates. Journal of Paleontology 75, 1202–1213, doi:10.1017/S0022336000017248 (2001).
8. Peyser, C. E. & Poulsen, C. J. Controls on Permo-Carboniferous precipitation over tropical Pangaea: A GCM sensitivity study. Palaeogeography, Palaeoclimatology, Palaeoecology 268, 181–192, doi:https://doi.org/10.1016/j.palaeo.2008.03.048 (2008).
9. Dunne, E. M. et al. Diversity change during the rise of tetrapods and the impact of the 'Carboniferous rainforest collapse'. Proc Biol Sci 285, doi:10.1098/rspb.2017.2730 (2018).
10. Rubidge, B. S. & Sidor, C. A. Evolutionary Patterns among Permo-Triassic Therapsids. Annual Review of Ecology and Systematics 32, 449–480 (2001).
11. DeMar, R. & Barghusen, H. R. Mechanis and the Evolution of the Synapsid Jaw. Evolution 26, 622–637, doi:10.2307/2407058 (1972).
12. Van Valkenburgh, B. & Jenkins, I. Evolutionary Patterns in the History of Permo-Triassic and Cenozoic Synapsid Predators. The Paleontological Society Papers 8, 267–288, doi:10.1017/S1089332600001121 (2002).
13. Sumida, S. & Martin, K. L. M. Amniote Origins: Completing the Transition to Land (Elsevier Science, 1997).
14. Espinoza, R. E., Wiens, J. J. & Tracy, C. R. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proc Natl Acad Sci USA 101, 16819–16824, doi:10.1073/pnas.0401226101 (2004).
15. Sjostrom, E. Wood Chemistry: Fundamentals and Applications (Elsevier Science, 1993).
16. Smant, G. et al. Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95, 4906–4911, doi:10.1073/pnas.95.9.4906 (1998).
17. Watanabe, H. & Tokuda, G. Animal cellulases. Cell Mol Life Sci 58, 1167–1178, doi:10.1007/PL00000931 (2001).
18. Lo, N., Watanabe, H. & Sugimura, M. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc Biol Sci 270 Suppl 1, S69–72, doi:10.1098/rsbl.2003.0016 (2003).
19. Kamo, S. L. et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian – Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214, 75–91, doi:https://doi.org/10.1016/S0012-821X (03) 00347–9 (2003).
20. Renne, P. R. & Basu, A. R. Rapid eruption of the siberian traps flood basalts at the permo-triassic boundary. Science 253, 176–179, doi:10.1126/science.253.5016.176 (1991).
21. Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372, doi:10.1126/science.1213454 (2011).
22. Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232, doi:10.1126/science.aaa0193 (2015).
23. Erwin, D. H. The Permo – Triassic extinction. Nature 367, 231–236, doi:10.1038/367231a0 (1994).
24. Rothman, D. H. et al. Methanogenic burst in the end-Permian carbon cycle. Proc Natl Acad Sci USA 111, 5462–5467, doi:10.1073/pnas.1318106111 (2014).
25. Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B. & Becker, L. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science 302, 1388–1392, doi:10.1126/science.1090852 (2003).
26. Becker, L. et al. Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science 304, 1469–1476, doi:10.1126/science.1093925 (2004).
27. Berner, R. A. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochimica et Cosmochimica Acta 69, 3211–3217, doi:https://doi.org/10.1016/j.gca.2005.03.021 (2005).
28. Floudas, D. et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719, doi:10.1126/science.1221748 (2012).
29. Gurewitsch, M. True Colors, (2008).
30. Talabot, M. The Myth of Whiteness in Classical Sculpture. The New Yorker (2018).
31. Conway, J., Kosemen, C. M., Naish, D. & Hartman, S. All Yesterdays: Unique and Speculative Views of Dinosaurs and Other Prehistoric Animals (Irregular Books, 2013).