Хлопок одной ладонью - Николай Кукушкин
Шрифт:
Интервал:
Закладка:
20. Seipel, K. & Schmid, V. Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev Biol 282, 14–26, doi:10.1016/j.ydbio.2005.03.032 (2005).
21. Leclere, L. & Rottinger, E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 4, 157, doi:10.3389/fcell.2016.00157 (2016).
22. Schippers, A. et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861–864, doi:10.1038/nature03302 (2005).
23. Cavalier-Smith, T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 361, 969–1006, doi:10.1098/rstb.2006.1842 (2006).
24. Holland, P. W. Did homeobox gene duplications contribute to the Cambrian explosion? Zoological Lett 1, 1, doi:10.1186/s40851-014-0004-x (2015).
25. Mangano, M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proc Biol Sci 281, 20140038, doi:10.1098/rspb.2014.0038 (2014).
26. Zhang, X. & Cui, L. Oxygen requirements for the Cambrian explosion. Journal of Earth Science 27, 187–195, doi:10.1007/s12583-016-0690-8 (2016).
27. Mills, D. B. & Canfield, D. E. Oxygen and animal evolution: did a rise of atmospheric oxygen «trigger» the origin of animals? Bioessays 36, 1145–1155, doi:10.1002/bies.201400101 (2014).
28. Sperling, E. A. et al. Oxygen, ecology, and the Cambrian radiation of animals. Proc Natl Acad Sci USA 110, 13446–13451, doi:10.1073/pnas.1312778110 (2013).
29. Fox, D. What sparked the Cambrian explosion? Nature 530, 268–270, doi:10.1038/530268a (2016).
30. Deline, B. et al. Evolution of metazoan morphological disparity. Proc Natl Acad Sci USA 115, E8909 – E8918, doi:10.1073/pnas.1810575115 (2018).
ГЛАВА 6. НА СУШУ!
1. King, H. Hippocrates' Woman: Reading the Female Body in Ancient Greece (Taylor & Francis, 2002).
2. Singer, C. The strange histories of some anatomical terms. Med Hist 3, 1–7, doi:10.1017/s0025727300024200 (1959).
3. Brown, G. W. Desert Biology: Special Topics on the Physical and Biological Aspects of Arid Regions (Elsevier Science, 2013).
4. Lutz, P. L. & Musick, J. A. The Biology of Sea Turtles (CRC Press, 2017).
5. Honegger, R., Edwards, D. & Axe, L. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 197, 264–275, doi:10.1111/nph.12009 (2013).
6. Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133, doi:10.1126/science.1061457 (2001).
7. Hawksworth, D. L. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Botanical Journal of the Linnean Society 96, 3–20, doi:10.1111/j.1095–8339.1988.tb00623.x (2008).
8. Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492, doi:10.1126/science.aaf8287 (2016).
9. Sancho, L. G. et al. Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7, 443–454, doi:10.1089/ast.2006.0046 (2007).
10. Rundel, P. W. The ecological role of secondary lichen substances. Biochemical Systematics and Ecology 6, 157–170, doi:https://doi.org/10.1016/0305–1978 (78) 90002–9 (1978).
11. Nash, T. H. Lichen Biology (Cambridge University Press, 1996).
12. Delwiche, C. F. & Cooper, E. D. The Evolutionary Origin of a Terrestrial Flora. Curr Biol 25, R899–910, doi:10.1016/j.cub.2015.08.029 (2015).
13. Kroken, S. B., Graham, L. E. & Cook, M. E. Occurrence and Evolutionary Significance of Resistant Cell Walls in Charophytes and Bryophytes. American Journal of Botany 83, 1241–1254, doi:10.2307/2446108 (1996).
14. Males, J. & Griffiths, H. Stomatal Biology of CAM Plants. Plant Physiol 174, 550–560, doi:10.1104/pp.17.00114 (2017).
15. Lewis, L. A. & McCourt, R. M. Green algae and the origin of land plants. Am J Bot 91, 1535–1556, doi:10.3732/ajb.91.10.1535 (2004).
16. Field, K. J., Pressel, S., Duckett, J. G., Rimington, W. R. & Bidartondo, M. I. Symbiotic options for the conquest of land. Trends Ecol Evol 30, 477–486, doi:10.1016/j.tree.2015.05.007 (2015).
17. Brundrett, M. in Advances in Ecological Research Vol. 21 (eds M. Begon, A. H. Fitter, & A. Macfadyen) 171–313 (Academic Press, 1991).
18. Brundrett, M. C. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154, 275–304, doi:10.1046/j.1469–8137.2002.00397.x (2002).
19. Harrison, C. J. & Morris, J. L. The origin and early evolution of vascular plant shoots and leaves. Philos Trans R Soc Lond B Biol Sci 373, doi:10.1098/rstb.2016.0496 (2018).
20. Beerling, D. J. Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years? Philos Trans R Soc Lond B Biol Sci 367, 477–482, doi:10.1098/rstb.2011.0276 (2012).
21. Dorrell, R. G. & Smith, A. G. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 10, 856–868, doi:10.1128/EC.00326–10 (2011).
22. Caldwell, J. P., Thorp, J. H. & Jervey, T. O. Predator-prey relationships among larval dragonflies, salamanders, and frogs. Oecologia 46, 285–289, doi:10.1007/BF00346253 (1980).
23. Rota-Stabelli, O., Daley, A. C. & Pisani, D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23, 392–398, doi:10.1016/j.cub.2013.01.026 (2013).
24. Linares, A. M., Maciel-Júnior, J. A. H., Espírito Santo De Mello, H. & Sá Fortes Leite, F. First report on predation of adult anurans by Odonata larvae. Salamandra 52, 42–44 (2016).
25. McCormick, S. & Polis, G. A. Arthropods that prey on vertebrates. Biological Reviews 57, 29–58, doi:10.1111/j.1469-185X.1982.tb00363.x (1982).
26. Ridpath, M. G. Predation on frogs and small birds by Hierodula werneri (Giglio-Tos) (Mantidae) in tropical Australia.. Australian Journal of Entomology 16, 153–154, doi:10.1111/j.1440–6055.1977.tb00077.x (1977).
27. Molinari, J. et al. Predation by giant centipedes, Scolopendra gigantea, on three species of bats in a Venezuelan cave. Caribbean Journal of Science 41, 340–346 (2005).