Хлопок одной ладонью - Николай Кукушкин
Шрифт:
Интервал:
Закладка:
16. Yale, E. (2015).
17. Jenkin, F. [Review of] The origin of species. The North British Review 46, 277–318 (1867).
18. Путин каждый день,
19. Wobble and Superwobble. Science 319, 878–878, doi:10.1126/science.319.5865.878b (2008).
20. Vanzi, F., Vladimirov, S., Knudsen, C. R., Goldman, Y. E. & Cooperman, B. S. Protein synthesis by single ribosomes. RNA 9, 1174–1179, doi:10.1261/rna.5800303 (2003).
21. Dennett, D. C. & Dennett, D. C. Darwin's Dangerous Idea: Evolution and the Meanins of Life (Simon & Schuster, 1996).
22. Докинз Р. Эгоистичный ген. – М.: Мир, 1993.
ГЛАВА 3. ЗАЧЕМ ВСЕ УСЛОЖНЯТЬ
1. Ligon, B. L. Penicillin: its discovery and early development. Semin Pediatr Infect Dis 15, 52–57, doi:10.1053/j.spid.2004.02.001 (2004).
2. Quinn, R. Rethinking antibiotic research and development: World War II and the penicillin collaborative. Am J Public Health 103, 426–434, doi:10.2105/AJPH.2012.300693 (2013).
3. Barber, M. & Rozwadowska-Dowzenko, M. Infection by penicillin-resistant staphylococci. Lancet 2, 641–644, doi:10.1016/s0140–6736 (48) 92166–7 (1948).
4. Kirby, W. M. Extraction of a Highly Potent Penicillin Inactivator from Penicillin Resistant Staphylococci. Science 99, 452–453, doi:10.1126/science.99.2579.452 (1944).
5. Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7, 629–641, doi:10.1038/nrmicro2200 (2009).
6. Antimicrobial resistance: global report on surveillance 2014, (2014).
7. Bush, K. The evolution of beta-lactamases. Ciba Found Symp 207, 152–163; discussion 163–156 (1997).
8. Dacks, J. B. et al. The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. J Cell Sci 129, 3695–3703, doi:10.1242/jcs.178566 (2016).
9. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87, 4576–4579, doi:10.1073/pnas.87.12.4576 (1990).
10. Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat Rev Microbiol 15, 711–723, doi:10.1038/nrmicro.2017.133 (2017).
11. Alberts, B. Molecular biology of the cell. 4th edn (Garland Science, 2002).
12. Raven, J. A. Rubisco: still the most abundant protein of Earth? New Phytol 198, 1–3, doi:10.1111/nph.12197 (2013).
13. Leslie, M. Origins. On the origin of photosynthesis. Science 323, 1286–1287, doi:10.1126/science.323.5919.1286 (2009).
14. Perez, N., Cardenas, R., Martin, O. & Michel, L.-M. The potential for photosynthesis in hydrothermal vents: a new avenue for life in the Universe? Astrophysics and Space Science 346, 327–331, doi:10.1007/s10509-013-1460-z (2013).
15. Van Dover, C. L., Reynolds, G. T., Chave, A. D. & Tyson, J. A. Light at deep-sea hydrothermal vents. Geophysical Research Letters 23, 2049–2052, doi:10.1029/96gl02151 (1996).
16. Blankenship, R. E. Early evolution of photosynthesis. Plant Physiol 154, 434–438, doi:10.1104/pp.110.161687 (2010).
17. Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5, 971–982, doi:10.1038/nrm1525 (2004).
18. Vinyard, D. J., Ananyev, G. M. & Dismukes, G. C. Photosystem II: the reaction center of oxygenic photosynthesis. Annu Rev Biochem 82, 577–606, doi:10.1146/annurev-biochem-070511–100425 (2013).
19. Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459, doi:10.1038/nature06811 (2008).
20. Lane, N. Oxygen: The Molecule that Made the World (Oxford University Press, 2003).
21. Наймарк Е. «Великое кислородное событие» на рубеже архея и протерозоя не было ни великим, ни событием, https://elementy.ru/novosti_nauki/432202/Velikoe_kislorodnoe_sobytie_na_rubezhe_arkheya_i_proterozoya_ne_bylo_ni_velikim_ni_sobytiem (2014).
22. van Holde, K. E., Miller, K. I. & Decker, H. Hemocyanins and invertebrate evolution. J Biol Chem 276, 15563–15566, doi:10.1074/jbc.R100010200 (2001).
23. Cavalier-Smith, T. The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann NY Acad Sci 503, 55–71, doi:10.1111/j.1749–6632.1987.tb40597.x (1987).
24. Lopez-Garcia, P. & Moreira, D. Open Questions on the Origin of Eukaryotes. Trends Ecol Evol 30, 697–708, doi:10.1016/j.tree.2015.09.005 (2015).
25. Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat Commun 1, 126, doi:10.1038/ncomms1124 (2010).
26. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179, doi:10.1038/nature14447 (2015).
27. Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 10, 1696–1705, doi:10.1038/ismej.2015.233 (2016).
28. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358, doi:10.1038/nature21031 (2017).
29. Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface. bioRxiv, 726976, doi:10.1101/726976 (2019).
30. Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 81, doi:10.1128/MMBR.00008–17 (2017).
31. Baum, D. A. A comparison of autogenous theories for the origin of eukaryotic cells. Am J Bot 102, 1954–1965, doi:10.3732/ajb.1500196 (2015).
32. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21, 1133–1145, doi:10.1097/00004647-200110000-00001 (2001).