Книги онлайн и без регистрации » Домашняя » Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы - Александр Марков

Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы - Александр Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 95 96 97 98 99 100 101 102 103 ... 116
Перейти на страницу:

В новой статье В. Р. Алексеева и Т. И. Казанцевой, опубликованной в 2007 году в «Журнале общей биологии», оценивается возможное влияние материнского эффекта на колебания численности популяций дафний, на время перехода от партеногенетического (однополого) размножения к двуполому, на количество зимующих яиц и другие параметры популяции.

В качестве «образца» для моделирования использовалась хорошо изученная популяция рачков Daphnia longispina из озера Красненького в Псковской области. Жизненный цикл этих рачков довольно сложен. Весной из зимующих яиц выходит первое поколение самок, которые начинают быстро размножаться путем партеногенеза, производя на свет только самок. В начале лета численность микроскопических водорослей — основной пищи дафний — снижается, и дафнии начинают производить на свет самцов и переходят к двуполому размножению. Образуются покоящиеся оплодотворенные яйца, и наступает «летняя диапауза», длящаяся не более месяца. Затем из яиц выходит новое поколение самок, размножающихся партеногенетически. В конце лета и осенью в популяции снова появляются самцы, начинается двуполое размножение и откладываются зимующие яйца, покрытые плотной оболочкой, позволяющей переносить неблагоприятные условия.

Переход дафний от однополого размножения к двуполому регулируется несколькими факторами — температурой, обилием пищи, длиной светового дня. Информация о динамике этих факторов в прошлом и настоящем доходит до дафний двумя путями: из их личного жизненного опыта, а также от матери благодаря «материнскому эффекту».

Разработанная авторами модель имитирует жизненный путь каждой отдельной особи. Вероятность перехода особи от однополого размножения к двуполому зависит в модели как от сиюминутного состояния факторов среды (температуры, длины светового дня, количества пищи), так и от индивидуального «потенциала роста» особи, который, в свою очередь, определяется условиями жизни и «потенциалом» ее матери. Потенциал роста определяет максимально возможную скорость роста данной особи. Чем медленнее рост, тем выше вероятность перехода к двуполому размножению.

Таким образом, переход к двуполому размножению зависит не только оттого, как питалась данная особь и каковы условия среды в данный момент, но и оттого, как питались ее мать и более далекие предки. Тем самым задается «материнский эффект» — негенетическая передача информации от матери к потомкам. Авторам удалось показать, что при определенных входных параметрах их модель очень точно воспроизводит реальную динамику численности самцов и самок, партеногенетических и покоящихся яиц, наблюдаемую в реальной популяции. Надо сказать, что эта реальная динамика достаточно сложна: например, в течение одного лета наблюдается несколько (обычно 5) пиков численности дафний.

Точное соответствие модельной и реальной популяционной динамики дало основания полагать, что модель действительно учитывает все основные факторы и причинно-следственные связи, определяющие эту динамику. Теперь модель можно было использовать для проверки гипотез о роли материнского эффекта.

Изъятие из модели материнского эффекта привело к тому, что модельная динамика стала резко отличаться от реальной. Ни один из вариантов модели с отключенным материнским эффектом не позволил воспроизвести динамику численности и формирование банка покоящихся яиц, необходимых для устойчивого многолетнего развития популяции.

Например, если потенциал роста был задан высоким, покоящиеся яйца практически не образовывались, выживание популяции в зимний период было возможно только благодаря небольшому количеству перезимовавших самок и в долгосрочной перспективе популяция становилась крайне уязвимой. На этом основании авторы сделали вывод о существенной роли материнского эффекта в формировании популяционной динамики и сезонных адаптаций у дафний.

(Источник: В. Р. Алексеев, Т. И. Казанцева. Использование индивидуально-ориентированной модели для изучения роли материнского эффекта в смене типов размножения у Cladocera // Журнал общей биологии. 2007. Т. 68. С. 231–240.)

—————

Что почитать на эту тему в Интернете

Б. Ф. Ванюшин. Материализация эпигенетики, или Небольшие изменения с большими последствиями. 2004. http://evolbiol.ru/epigeneticai.pdf

В. А. Гвоздев. Регуляция активности генов, обусловленная химической модификацией (метилированием) ДНК. 1999. http://evolbiol.ru/gvozdev1999.pdf

Л. А. Животовский. Наследование приобретенных признаков: Ламарк был прав. 2003. http://evolbiol.ru/zh_lamark.pdf

С. Г. Инге-Вечтомов. Цитогены и прионы: цитоплазматическая наследственность без ДНК? 1996. http://evolbiol.ru/inge1996.pdf

Ж. Б. Ламарк. Философия зоологии (главы из книги). http://evolbiol.ru/lamark.htm

А. В. Марков. Обзоры на сайте «Проблемы эволюции»:

Горизонтальный перенос генов и его роль в эволюции. http://evolbiol.ru/latgentrans.htm

На что похожа эволюция: на ветвящееся дерево или на сеть? http://evolbiol.ru/reticulum.htm

Наследование приобретенных признаков (неоламаркистская страничка) http://evolbiol.ru/neolamarck.htm

С. А. Назаренко. Эпигенетическая регуляция активности генов и ее эволюция. 2002. http://evolbiol.ru/nazarenko2002.htm

В. А. Ратнер, Л. А. Васильева. Мобильные генетические элементы (МГЭ) и эволюция геномов. 1993. http://evolbiol.ru/ratnen.htm

Э. Стил, Р. Линдли, Р. Бландэн. Что если Ламарк прав? Иммуногенетика и эволюция. 2002. http://evolbiol.ru/lamarck.htm

С. В. Шестаков. Роль горизонтального переноса генов в эволюции. 2003. http://evolbiol.ru/shestakov.htm

Глава 9. На подступах к неведомому

У некоторых читателей при чтении предыдущих глав могло сложиться обманчивое впечатление, что в биологии осталось не так уж много нерешенных проблем. Эта глава написана специально для тех, кто так подумал.

На самом деле в сегодняшней биологии нерешенных загадок и тайн, пожалуй, больше, чем когда-либо в прошлом. Это вовсе не значит, что биология удаляется от истины, а ученые все больше запутываются в неразрешимых противоречиях. Тенденция как раз противоположная: большинство возникающих вопросов успешно и довольно быстро разрешается, но каждый полученный ответ порождает новые вопросы. Хорошую аллегорию для этой ситуации придумали еще древние греки — первооткрыватели научного метода познания. Если представить себе область известного как некую замкнутую геометрическую фигуру, допустим, шар, а область неведомого — как все, что находится за пределами этой фигуры, то становится ясно, почему с ростом наших знаний появляется все больше новых вопросов. Чем больше объем шара, читай — количество знаний, тем больше площадь его соприкосновения с неведомым. Эта площадь символизирует количество вопросов, которые уже осознаны человечеством, но еще не получили ответа.

1 ... 95 96 97 98 99 100 101 102 103 ... 116
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?