Эффект теломер. Революционный подход к более молодой, здоровой и долгой жизни - Элисса Эпель
Шрифт:
Интервал:
Закладка:
5. Werner, C. et al., “Differential Effects of Aerobic Endurance, Interval and Strength Endurance Training on Telomerase Activity and Senescence Marker Expression in Circulating Mononuclear Cells,” European Heart Journal 36 (abstract supplement) (August 2015): P2370, http://eur-heartj.oxfordjournals.org/content/ehj/36/suppl_1/163.full.pdf.
6. Loprinzi, P. D., J. P. Loenneke, and E. H. Blackburn, “Movement-Based Behaviors and Leukocyte Telomere Length Among US Adults,” Medicine and Science in Sports and Exercise 47, no. 11 (November 2015): 2347–2352, doi:10.1249/MSS.0000000000000695.
7. Chilton, W. L., et al., “Acute Exercise Leads to Regulation of Telomere-Associated Genes and MicroRNA Expression in Immune Cells,” PLOS ONE 9, no. 4 (2014): e92088, doi:10.1371/journal.pone.0092088.
8. Denham, J., et al., “Increased Expression of Telomere-Regulating Genes in Endurance Athletes with Long Leukocyte Telomeres,” Journal of Applied Physiology (1985) 120, no. 2 (January 15, 2016): 148–158, doi:10.1152/japplphysiol.00587.2015.
9. Rana, K. S., et al., “Plasma Irisin Levels Predict Telomere Length in Healthy Adults,” Age 36, no. 2 (April 2014): 995–1001, doi:10.1007/s11357–014–9620–9.
10. Mooren, F. C., and K. Krüger, “Exercise, Autophagy, and Apoptosis,” Progress in Molecular Biology and Translational Science 135 (2015): 407–422, doi:10.1016/bs.pmbts.2015.07.023.
11. Hood, D. A., et al., “Exercise and the Regulation of Mitochondrial Turnover,” Progress in Molecular Biology and Translational Science 135 (2015): 99–127, doi:10.1016/bs.pmbts.2015.07.007.
12. Loprinzi, P. D., “Cardiorespiratory Capacity and Leukocyte Telomere Length Among Adults in the United States,” American Journal of Epidemiology 182, no. 3 (August 1, 2015): 198–201, doi:10.1093/aje/kwv056.
13. Krauss, J., et al., “Physical Fitness and Telomere Length in Patients with Coronary Heart Disease: Findings from the Heart and Soul Study,” PLOS ONE 6, no. 11 (2011): e26983, doi:10.1371/journal.pone.0026983.
14. Denham, J., et al., “Longer Leukocyte Telomeres Are Associated with Ultra-Endurance Exercise Independent of Cardiovascular Risk Factors,” PLOS ONE 8, no.7 (2013): e69377, doi:10.1371/journal.pon e.0069377.
15. Denham et al., “Increased Expression of Telomere-Regulating Genes in Endurance Athletes with Long Leukocyte Telomeres.” (See #8 above.)
16. Laine, M. K., et al., “Effect of Intensive Exercise in Early Adult Life on Telomere Length in Later Life in Men,” Journal of Sports Science and Medicine 14, no. 2 (June 2015):
239–245.
17. Werner, C., et al., “Physical Exercise Prevents Cellular Senescence in Circulating Leukocytes and in the Vessel Wall,” Circulation 120, no. 24 (December 15, 2009): 2438–2447, doi:10.1161/CIRCULATIONAHA.109.861005.
18. Saßenroth, D., et al., “Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II),” PLOS ONE 10, no. 12 (2015): e0142131, doi:10.1371/ journal.pone.0142131.
19. Collins, M., et al., “Athletes with Exercise-Associated Fatigue Have Abnormally Short Muscle DNA Telomeres,” Medicine and Science in Sports and Exercise 35, no. 9 (September 2003): 1524–1528.
20. Wichers, M., et al., “A Time-Lagged Momentary Assessment Study on Daily Life Physical Activity and Affect,” Health Psychology 31, no. 2 (March 2012): 135–144. doi:10.1037/a0025688.
21. Von Haaren, B., et al., “Does a 20–Week Aerobic Exercise Training Programme Increase Our Capabilities to Buffer Real-Life Stressors? A Randomized, Controlled Trial Using Ambulatory Assessment,” European Journal of Applied Physiology 116, no. 2 (February 2016): 383–394, doi:10.1007/s00421–015–3284–8.
22. Puterman, E., et al., “The Power of Exercise: Buffering the Effect of Chronic Stress on Telomere Length,” PLOS ONE 5, no. 5 (2010): e10837, doi:10.1371/journal.pone.0010837.
23. Puterman, E., et al., “Multisystem Resiliency Moderates the Major Depression – Telomere Length Association: Findings from the Heart and Soul Study,” Brain, Behavior, and Immunity 33 (October 2013): 65–73, doi:10.1016/j.bbi.2013.05.008.
24. Werner et al., “Differential Effects of Aerobic Endurance, Interval and Strength Endurance Training on Telomerase Activity and Senescence Marker Expression in Circulating Mononuclear Cells.” (See #5 above.)
25. Masuki, S., et al., “The Factors Affecting Adherence to a Long-Term Interval Walking Training Program in Middle-Aged and Older People,” Journal of Applied Physiology (1985) 118, no. 5 (March 1, 2015): 595–603, doi:10.1152/japplphysiol.00819.2014.
26. Loprinzi, “Leisure – Time -Screen – Based Sedentary Behavior and Leukocyte Telomere Length.” (See #4 above.)
1. “Lack of Sleep Is Affecting Americans, Finds the National Sleep -Foundation,” National Sleep Foundation, https://sleepfoundation.org/media-center/press-release/lack-sleep-affecting-americans-finds-the-national-sleep-foundation, accessed September 29, 2015.
2. Carroll, J. E., et al., “Insomnia and Telomere Length in Older Adults,” Sleep, 39, no. 3 (March 1, 2016): 559–564, doi:10.5665/sleep.5526.
3. Micic, G., et al., “The Etiology of Delayed Sleep Phase Disorder,” Sleep Medicine Reviews 27 (June 2016): 29–38, doi:10.1016/j.smrv.2015.06.004.
4. Sachdeva, U. M., and C. B. Thompson, “Diurnal Rhythms of Autophagy: Implications for Cell Biology and Human Disease,” Autophagy 4, no. 5 (July 2008): 581–589.
5. Gonnissen, H. K. J., T. Hulshof, and M. S. Westerterp-Plantenga, “Chronobiology, Endocrinology, and Energy-and-Food-Reward Homeostasis,” Obesity Reviews 14, no. 5 (May 2013): 405–416, doi:10.1111/ obr.12019.
6. Van der Helm, E., and M. P. Walker, “Sleep and Emotional Memory Processing,” Journal of Clinical Sleep Medicine 6, no. 1 (March 2011): 31–43.
7. Meerlo, P., A. Sgoifo, and D. Suchecki, “Restricted and Disrupted Sleep: Effects on Autonomic Function, Neuroendocrine Stress Systems and Stress Responsivity,” Sleep Medicine Reviews 12, no. 3 (June 2008): 197–210, doi:10.1016/j.smrv.2007.07.007.
8. Walker, M. P., “Sleep, Memory, and Emotion,” Progress in Brain Research 185 (2010): 49–68, doi:10.1016/B978–0–444–53702–7.00004-X.
9. Lee, K. A., et al., “Telomere Length Is Associated with Sleep Duration but Not Sleep Quality in Adults with Human Immunodeficiency Virus,” Sleep 37, no. 1 (January 1, 2014): 157–166, doi:10.5665/sleep.3328; and Cribbet, M. R., et al., “Cellular Aging and Restorative Processes: Subjective Sleep Quality and Duration Moderate the Association Between Age and Telomere Length in a Sample of Middle-Aged and Older Adults,” Sleep 37, no. 1 (January 1, 2014): 65–70, doi:10.5665/sleep.3308.