Книги онлайн и без регистрации » Разная литература » Интернет-журнал "Домашняя лаборатория", 2007 №8 - Журнал «Домашняя лаборатория»

Интернет-журнал "Домашняя лаборатория", 2007 №8 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 74 75 76 77 78 79 80 81 82 ... 463
Перейти на страницу:
который шевелит листья растений, тем самым помогает им "качать" из почвы питательные вещества. Если ветра нет совсем, питательные вещества поднимаются плохо. Разумеется, биологи быстро нашли объяснение этому феномену и даже удивились — почему не подумали об этом раньше? Попробуйте сами, вслед за биологами, объяснить открытие Головченко — для этого нужно знать биологию и физику на уровне седьмого-восьмого класса.

Вы думаете, что Головченко, порадовавшись нежданному открытию, на этом остановился? Ошибаетесь. Использование ресурсов — важный закон развития технических систем, но ведь не единственный же! Есть еще один закон — каждая техническая система представляет собой веполь.

В любой технической системе непременно существуют два "вещества", которые взаимодействуют друг с другом при помощи "поля". Но только ли в технических системах действуют веполи?

Головченко не ставил больше экспериментов, а засел за литературу по биологии. И узнал, например, что питательные вещества откладываются в растениях там, где ветви соединяются со стволом, или листья — с веткой. Почему именно там? Биология ответа не давала, и Головченко нашел его сам.

Давайте рассуждать. Веполь — это два вещества, взаимодействующие друг с другом с помощью какого-то поля. Вещества у нас есть. Это, во-первых, ветки растений, а во-вторых, разные химические соединения, необходимые растениям в качестве пищи. А поле?

Начнем с самого простого — механического. И сразу сделаем открытие, точнее, повторим его вслед за инженером Головченко, который занимался этой проблемой двадцать лет назад. Ветер! Ветер — это механическая энергия. Ветер, который колышет листья растений, помогает им аккумулировать питательные вещества. Там, где ветер совершает наибольшую работу — в местах соединений листьев с ветвями, а ветвей со стволом, — откладывается больше всего питательных веществ.

Я надеюсь, что мой рассказ о том, как инженер Головченко сделал открытие в биологии, не привел читателей к мысли, что все так просто! Конечно, Головченко потратил немало времени, читая книги по биологии растений и разбираясь в том, где и как действуют привычные веполи. Главное, что изобретатель, приступая к делу, уже представлял себе приблизительно, в чем будет состоять открытие! Он не действовал, как коллеги-ученые, методом проб и ошибок.

А собственно, почему инженер заинтересовался вдруг биологией? Вовсе не вдруг, ТРИЗ давно уже ищет в развитии биологических систем законы, которые могли бы лучше понять законы развития технических систем. Технические и биологические системы довольно часто "поступают" совершенно одинаково. Помните задачи о пауках? Эти не очень приятные существа решали свои биологические проблемы так, будто были специалистами по ТРИЗ!

Когда-то, лет сорок назад, когда теория решения изобретательских задач еще только начинала развиваться, существовал даже такой прием: если техническая задача не решается, попробуйте найти аналог в биологии. Может, наши природные собратья такую же задачу уже решили?

Возникла целая наука — бионика, поиск природных прототипов технических систем. К примеру, когда изобрели ультразвуковую локацию, выяснилось, что нечто подобное давно используют летучие мыши. А реактивный способ передвижения первым открыл вовсе не Циолковский, а… кальмары. Изобретатели начали буквально "охотиться" за кое-какими представителями животного мира, надеясь выведать приемы для решения технических задач. Дельфины, к примеру, передвигаются в воде очень быстро — слишком быстро, если учесть, что их мышцы куда слабее, чем винты подводной лодки. Тем не менее, не всякая субмарина сравнится с дельфином в скорости!

В чем дело? Начали исследовать двигательные аппараты дельфинов. Какие только идеи не возникли — от особого состава, которым смачивается дельфинья шкура, до особой формы дельфиньего носа… Но, несмотря на все усилия, создать лодку-аналог дельфина, не удалось до сих пор.

Оказалось, что куда перспективнее не искать отдельные аналогии между природой и техникой, а исследовать общие для них законы развития. Этим и занялись специалисты по ТРИЗ, знание этих законов и позволило Головченко сделать биологическое открытие.

Идея о существовании законов развития биологических систем представляется многим биологам столь же еретической, как теоретикам по психологии творчества — существование законов, по которым (независимо от нашего желания!) развиваются системы технические.

Природа, как считают многие биологи, пользуется методом проб и ошибок, создавая новые виды живых существ (я не говорю сейчас о другой возможности объяснения возникновения жизни и разума!). И если ТРИЗ полагает этот метод устаревшим, если и в науке уже этот метод отживает свое, неужели природа продолжает им пользоваться?

БЕЗ ОШИБОК?

Если какая-то закономерность существует в технике, может, есть она и в природе? Исследователи и создатели ТРИЗ сумели установить, по каким законам развиваются технические системы, создаваемые людьми. Хотя системы создаются людьми, но (пусть это не покажется странным) развиваются они по вполне определенным законам, которые от инженеров-изобретателей не зависят. Вот, скажем, закон стремления к идеальности. Допустим, какой-нибудь изобретатель скажет: "Не буду я с этим законом считаться! Я этот мотор придумал, я буду совершенствовать его так, как хочу!"

Ничего у такого изобретателя не получится. Точнее, он сможет, конечно, изобрести для своего мотора какой-нибудь, совершенно ненужный, довесок. Но, если изобретатель не будет считаться с известными уже законами развития технических систем, то изобретения его не будут никому нужны, и никто никогда не станет их реализовывать.

Итак, технические системы искусственны, но законы их развития очень даже естественны, и от желания человека не зависят. А как с развитием природных систем — животных и человека? Может быть, имеет смысл сравнить законы развития технических систем и законы естественной эволюции? Может, между ними есть что-то общее?

Давайте попробуем.

Итак, сначала изобретатели действовали методом проб и ошибок. При этом каждый изобретатель повторял ошибки своего коллеги, поскольку никаких патентоведческих журналов не существовало. Это был первый этап.

Второй этап: появились журналы со списками патентов, и изобретатели пере стали повторять чужие ошибки. Иными словами, у "метода проб и ошибок" появилась память. Но все же инженеры продолжали каждую новую пробу и каждую очередную ошибку совершать, так сказать, "в металле", изводя оборудование, и время от времени даже лишаясь жизни, если конструкция, не дай Бог, взорвется. Третий этап: от проб и ошибок "в натуре" изобретатели перешли к моделям. Вот уж действительно — лучше заранее рассчитать все, что может получиться из вашей идеи, чем рисковать аппаратурой и здоровьем.

И, наконец, четвертый, ТРИЗовский, этап: выявлены законы развития технических систем, не нужны больше ни пробы, ни ошибки, ни даже модели.

Теперь перейдем к природе, которая, как и до сих пор утверждают многие биологи, создавала жизнь и даже разум, действуя слепо и тупо методом проб и ошибок. Как неталантливый изобретатель на первом этапе. Эволюция простейших организмов миллиарды лет назад шла именно так — пробы и ошибки,

1 ... 74 75 76 77 78 79 80 81 82 ... 463
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?