Слепая физиология. Удивительная книга про зрение и слух - Сьюзан Р. Барри
Шрифт:
Интервал:
Закладка:
84
Goldberg, Creativity.
85
A. T. Morgan, L. S. Petro, and L. Muckli, “Scene Representations Conveyed by Cortical Feedback to Early Visual Cortex Can Be Described by Line Drawings,” Journal of Neuroscience 39 (2019): 9410–9423.
86
E. J. Gibson, “Perceptual Learning: Differentiation or Enrichment?” in An Odyssey in Learning and Perception (Cambridge, MA: MIT Press, 1991); E. J. Gibson and A. D. Pick, An Ecological Approach to Perceptual Learning and Development (New York: Oxford University Press, 2000); P. J. Kellman and P. Garrigan, “Perceptual Learning and Human Expertise,” Physics of Life Reviews 6 (2009): 53–84.
87
M. Sigman et al., “Top-Down Reorganization of Activity in the Visual Pathway After Learning a Shape Identification Task,” Neuron 46 (2005): 823–845.
88
A. W. Young, D. Hellawell, and D. C. Hay, “Configurational Information in Face Perception,” Perception 16 (1987): 747–759.
89
D. G. Pelli, “Close Encounters – an Artist Shows That Size Affects Shape,” Science 285 (1999): 844–846; P. Cavanagh and J. M. Kennedy, “Close Encounters: Details Veto Depth from Shadows,” Science 287 (2000): 2423–2425.
90
“Conversation: Chuck Close, Christopher Finch,” NewsHour, PBS, July 2, 2010, http://www.pbs.org/newshour/art/conversation-chuck-close-christopher-finch.
91
S. Hocken, Emma and I: The Beautiful Labrador Who Saved My Life (London: Ebury Press, 2011), 270.
92
R. L. Gregory and J. G. Wallace, Recovery from Early Blindness: A Case Study, Monograph No. 2 (Cambridge, UK: Experimental Psychology Society, 1963); R. Kurson, Crashing Through: A True Story of Risk, Adventure, and the Man Who Dared to See (New York: Random House, 2007); O. Sacks, “To See and Not See,” in An Anthropologist on Mars: Seven Paradoxical Tales (New York: Alfred A. Knopf, 1995); A. Valvo, Sight Restoration After Long-Term Blindness: The Problems and Behavior Patterns of Visual Rehabilitation (New York: American Federation for the Blind, 1971); M. Von Senden, Space and Sight: The Perception of Space and Shape in the Congenitally Blind Before and After Operation (Glencoe, IL: Free Press, 1960).
93
S. Geldart et al., “The Effect of Early Visual Deprivation on the Development of Face Processing,” Developmental Science 5 (2002): 490–501; R. A. Robbins et al., “Deficits in Sensitivity to Spacing After Early Visual Deprivation in Humans: A Comparison of Human Faces, Monkey Faces, and Houses,” Developmental Psychobiology 52 (2010): 775–781.
94
M. E. Arterberry and P. J. Kellman, Development of Perception in Infancy: The Cradle of Knowledge Revisited (New York: Oxford University Press, 2016); C. C. Goren, M. Sarty, and P. Y. K. Wu, “Visual Following and Pattern Discrimination of Face-Like Stimuli by Newborn Infants,” Pediatrics 56 (1975): 544–549; A. Slater, “The Competent Infant: Innate Organization and Early Learning in Infant Visual Perception,” in Perceptual Development: Visual, Auditory, and Speech Perception in Infancy, ed. A. Slater (East Sussex, UK: Psychology Press Ltd., Publishers, 1998).
95
Arterberry and Kellman, Development of Perception in Infancy; I. W. R. Bushnell, F. Sai, and J. T. Mullin, “Neonatal Recognition of the Mother’s Face,” British Journal of Developmental Psychology 7 (1989): 3–15.
96
N. Kanwisher and G. Yovel, “The Fusiform Face Area: A Cortical Region Specialized for the Perception of Faces,” Philosophical Transactions of the Royal Society B 1476 (2006): 2109–2128.
97
M. Bilalic et al., “Many Faces of Expertise: Fusiform Face Area in Chess Experts and Novices,” Journal of Neuroscience 31 (2011): 10206–10214.
98
Bilalic et al., “Many Faces of Expertise.”
99
C. Turati et al., “Newborns’ Face Recognition: Role of Inner and Outer Facial Features,” Child Development 77 (2006): 297–311.
100
R. Adolphs et al., “A Mechanism for Impaired Fear Recognition After Amygdala Damage,” Nature 433 (2005): 68–72.
101
Hocken, Emma and I.
102
G. Kanisza, “Subjective Contours,” Scientific American 234 (1976): 48–52.
103
A. L. Bregman, “Asking the ‘What For’ Question in Auditory Perception,” in Perceptual Organization, ed. M. Kubovy and J. R. Pomerantz (Hillsdale, NJ: Lawrence Earlbaum, 1981); K. Nakayama and S. Shimojo, “Toward a Neural Understanding of Visual Surface Representation,” The Brain, Cold Spring Harbor Symposium in Quantitative Biology 55 (1990): 911–924.
104
S. R. Barry, Fixing My Gaze: A Scientist’s Journey into Seeing in Three Dimensions (New York: Basic Books, 2009).
105
E. E. Birch, S. Shimojo, and R. Held, “Preferential-Looking Assessment of Fusion and Stereopsis in Infants Aged 1–6 Months,” Investigative Ophthalmology & Visual Science 26 (1985): 366–370; R. Fox et al., “Stereopsis in Human Infants,” Science 207 (1980): 323–324; B. Petrig et al., “Development of Stereopsis and Cortical Binocularity in Human Infants: Electrophysiological Evidence,” Science 213 (1981): 1402–1405; F. Thorn et al. “The Development of Eye Alignment, Convergence, and Sensory Binocularity in Young Infants,” Investigative Ophthalmology & Visual Science 35 (1994): 544–553.
106
M. E. Arteberry and P. J. Kellman, Development of Perception in Infancy: The Cradle of Knowledge Revisited (New York: Oxford University Press, 2016); M. Arterberry, A. Yonas, and A. S. Bensen, “Self-Produced Locomotion and the Development of Responsiveness to Linear Perspective and Texture Gradients,” Developmental Psychology 25 (1989): 976–982; M. Kavsek, A. Yonas, and C. E. Granrud, “Infants’ Sensitivity to Pictorial Depth Cues: A Review and Meta-analysis of Looking Studies,” Infant Behavior and Development 35 (2012): 109–128; A. Tsuruhara et al., “The Development of the Ability of Infants to Utilize Static Cues to Create and Access Representations of Object Shape,” Journal of Vision 10 (2010), doi:10.1167/10.12.2; A. Yonas and C. E. Granrud, “Infants’ Perception of Depth from Cast Shadows,”