Математика космоса. Как современная наука расшифровывает Вселенную - Йен Стюарт
Шрифт:
Интервал:
Закладка:
Так или иначе, вещество звезды разлетается со скоростью 1/10 скорости света и порождает ударную волну. Волна эта собирает в себя газ и пыль и образует расширяющуюся оболочку — остаток сверхновой. Именно в этом взрыве возникают элементы Периодической таблицы тяжелее железа, и именно так они распространяются на галактические расстояния[60].
Я сказал, что предсказанное соотношение элементов в основном соответствует наблюдаемым данным. Ярчайшее исключение — литий: реальное содержание лития-7 во Вселенной составляет лишь треть от того, что предсказывает теория, тогда как лития-6 примерно в 1000 раз больше, чем должно бы быть. Некоторые ученые считают, что это всего лишь незначительная ошибка, которую, вероятно, можно исправить, найдя новые траектории реакций или новые сценарии образования лития. Другие видят в этом серьезную проблему, для разрешения которой, вероятно, потребуется новая физика, выходящая за рамки стандартной теории Большого взрыва.
Существует и третья возможность: лития-7 намного больше, чем нам кажется, но находится он где-то там, где мы не можем его регистрировать. В 2006 году Андреас Корн и его сотрудники сообщили, что в шаровом скоплении NGC 6397, где-то в направлении на Большое Магелланово Облако, относительное содержание лития примерно соответствует предсказанию, сделанному на основе просчета ядерного синтеза Большого взрыва. Ученые предполагают, что кажущийся недостаток лития-7 в звездах галактического гало — примерно четвертая часть от предсказанного — может указывать на то, что эти звезды вовсе не потеряли литий-7, как кажется, а просто увели его посредством турбулентной конвекции в более глубокие слои, где его уже невозможно зарегистрировать.
Реакция на литиевую загадку поднимает перед нами потенциальную проблему, связанную с предсказаниями на основе ядерного синтеза Большого взрыва. Представим, что мы вычисляем относительное содержание различных элементов. За значительную часть происходящего во Вселенной, вероятно, отвечают самые обычные, самые распространенные ядерные реакции, и величины, полученные в результате их просчета, в большинстве случаев не сильно отличаются от реальности. А дальше мы начинаем работать над отклонениями. Слишком мало серы? Хм-м, давайте найдем новые траектории, ведущие к образованию серы. Так, нашли, и числа теперь выглядят правильно — с серой разобрались, переходим к цинку. Чего мы при этом не делаем, так это не продолжаем поиски новых путей образования серы. Я не хочу сказать, что кто-то намеренно делает подобные вещи, такой избирательный подход — штука естественная, он случался в науке и прежде. Возможно, литий не единственное несоответствие. Сосредоточившись на случаях, где содержание получается слишком низким, мы, возможно, упускаем те случаи, где более тщательные расчеты сделали бы его слишком высоким.
Еще одна характеристика звезд, которая сильно зависит от математической модели, — это их точная структура. Строение большинства звезд на каком-то конкретном этапе своей эволюции может быть описано как серия концентрических оболочек. Каждая оболочка имеет собственный, вполне конкретный состав и «сгорает» в подходящих ядерных реакциях. Некоторые оболочки прозрачны для электромагнитного излучения и испускают тепло в окружающее пространство. Некоторые непрозрачны, и тепло в них переносится конвекцией. Эти структурные соображения самым тесным образом связаны с эволюцией звезд и способами, посредством которых они синтезируют химические элементы.
* * *
Попытка разобраться в одном из «дефицитов» привела Хойла к знаменитому предсказанию. Когда он просчитал (ожидаемое) относительное содержание углерода, его получилось слишком мало. Однако мы существуем, а углерод служит принципиально важным ингредиентом жизни. Поскольку мы с вами — звездная пыль, то получается, что звезды должны каким-то образом вырабатывать намного больше углерода, чем указывают расчеты Хойла. Исходя из этого, он предсказал существование неизвестного пока резонанса в ядре углерода, который намного упрощал бы его образование. Позже резонанс действительно был зарегистрирован, примерно там, где и предсказал его Хойл. Этот факт часто представляется как триумф антропного принципа: сам факт нашего существования накладывает серьезные ограничения на Вселенную.
Критический анализ этой истории опирается в какой-то мере на ядерную физику. Естественный путь к образованию углерода — это тройной альфа-процесс или, иначе, тройная гелиевая реакция, проходящая в красных гигантах. Гелий-4 имеет в ядре два протона и два нейтрона. Основной изотоп углерода содержит по шесть штук того и другого. Так что три ядра гелия (или альфа-частицы, как их еще называют) при слиянии могут образовать ядро углерода. Замечательно, но… Два ядра гелия сталкиваются часто, но если мы хотим получить в результате углерод, то третье ядро гелия должно врезаться в первые два ровно в момент столкновения. Тройное столкновение в звезде происходит ужасно редко, так что углерод не может образовываться таким путем. Хорошо, пусть два ядра гелия, сливаясь, образуют бериллий-8, а затем уже третье ядро гелия сливается с ним и образует углерод. К несчастью, бериллий-8 распадается через 10↑–16 секунды, что очень ограничивает возможности его столкновения с ядром гелия. Такой двухступенчатый процесс не может дать достаточное количество углерода.
Если только не окажется… что энергия углерода очень близка к суммарной энергии бериллия-8 и гелия. Это своего рода ядерный резонанс, именно он заставил Хойла предсказать новое, неизвестное на тот момент состояние углерода с энергией на 7,6 МэВ выше самого низкого энергетического состояния. Через несколько лет действительно было открыто состояние с энергией 7,6549 МэВ. Но суммарная энергия бериллия-8 и гелия составляет 7,3667 МэВ, так что энергия новооткрытого состояния углерода, получается, чуть великовата.
Откуда же берется эта энергия? Ее почти полностью обеспечивает температура красного гиганта.
Это один из любимых примеров пропагандистов так называемой «тонкой настройки» — идеи о том, что Вселенная необычайно точно настроена таким образом, чтобы в ней могла существовать жизнь. Я еще вернусь к этому в главе 19. Основное их утверждение заключается в том, что без углерода нас бы не было. Но существование такого значительного количества углерода требует тонкой настройки звезды и ядерного резонанса, а то и другое опирается на фундаментальные законы физики. Позже Хойл развил эту идею:
«Должно быть, свойства углеродного атома разрабатывал какой-то сверхрасчетливый разум, в противном случае мои шансы найти такой атом через слепые силы природы были бы совершенно ничтожны. Интерпретация фактов при помощи здравого смысла подсказывает, что какой-то сверхразум поиграл с физикой, а также с химией и биологией и что в природе вообще не существует слепых сил, о которых бы следовало говорить».