Книги онлайн и без регистрации » Домашняя » Жизнь на грани. Ваша первая книга о квантовой биологии - Джонджо МакФадден
[not-smartphone]

Жизнь на грани. Ваша первая книга о квантовой биологии - Джонджо МакФадден

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 45 46 47 48 49 50 51 52 53 ... 99
Перейти на страницу:

Однако, как подтвердит любой врач-исследователь, пробы, подразумевающие участие человеческих органов чувств, всегда сопряжены с рядом сложностей, таких как ожидания испытуемых или их опыт, предшествовавший эксперименту. Чтобы избежать подобных сложностей, команда ученых под руководством Эфтимиоса Скулакиса из Института Александра Флеминга (Вари, Греция) совместно с исследователями из МТИ, среди которых был и Лука Турин, решила провести эксперимент с более надежными испытуемыми — плодовыми мушками, выведенными в лабораторных условиях. Данный эксперимент по своему принципу напоминает эксперимент Габриэле Герлах с выбором потока воды коралловыми рыбками (мы говорили об этом эксперименте в самом начале данной главы). Ученые назвали этот эксперимент T-лабиринтом. Мушек запускали в лабиринт T-образной формы через узкий стержень и подгоняли к развилке, где они должны были решить, в какую сторону им лететь — направо или налево. С обеих сторон развилки в лабиринт был закачан ароматизированный воздух. Подсчитав количество мушек, выбравших то или иное направление, ученые надеялись определить, способны ли мушки почувствовать разницу в запахах, закачанных соответственно в левый и правый рукав лабиринта.

Для начала ученые выяснили, чувствуют ли мушки запах ацетофенона. Оказалось, что они чувствуют его прекрасно: достаточно было распылить крошечную капельку вещества в правом рукаве лабиринта, как почти все мушки послушно устремились на его фруктовый аромат. Затем ученые заменили обычные атомы водорода в молекулах ацетофенона на дейтерий. В ходе данного эксперимента ученые меняли на дейтерий не каждый восьмой атом водорода, а три, пять или сразу все восемь атомов. Каждый вариант проверялся отдельно, причем в одном из рукавов лабиринта всегда оставалась недейтеризованная форма вещества. Исследователей ожидали поразительные результаты. Когда в левом рукаве был распылен ацетофенон с тремя тяжелыми изотопами в молекуле, мушки забывали о своих предпочтениях и выбирали направление совершенно беспорядочно: то направо, то налево. Когда в правом рукаве распылялся дейтеризованный ацетофенон с пятью или восьмью замещенными атомами в молекуле, мушки решительно сворачивали налево, подальше от дейтеризованного запаха. Казалось, что они чувствуют разницу между обычной и сильно дейтеризованной формой ацетофенона и им не очень-то нравится запах последней. Команда ученых ввела в эксперимент два дополнительных вещества. Выяснилось, что мушки легко различали на запах формы октанола с обычным водородом и дейтерием, однако не чувствовали разницу между соответствующими формами бензальдегида. Чтобы доказать, что при определении направления в лабиринте мушки пользуются именно обонянием, ученые провели такой же эксперимент с мушками-мутантами, у которых отсутствовали функциональные обонятельные рецепторы. Как и ожидалось, мушки-аносмики[80] не способны различать формы пахучих веществ с обычными атомами водорода и дейтерием.

Используя набор условных рефлексов Павлова, ученые научили мушек ассоциировать некоторые формы веществ с наказанием — легким ударом электрического тока, пропускаемого через лапки. Группе исследователей удалось провести еще один замечательный эксперимент, проверяющий состоятельность теории вибрации. Сначала ученые приучили мушек избегать веществ, в которых атом углерода был связан с дейтерием (частота колебаний данной химической связи равна 66 терагерцам). Затем они решили проверить, будут ли мушки избегать встречи с другими веществами, в молекулах которых окажутся другие химические связи, совершающие колебания с той же частотой. Проверка прошла успешно. Мушки, приученные избегать веществ, в молекулах которых есть связь углерод — дейтерий, также избегали встречи с группой веществ под общим названием «нитрилы», в молекулах которых углерод-азотная связь, несмотря на значительное отличие от углерод-водородной связи по структуре и химическим свойствам, совершает колебания с той же частотой. Результаты данного исследования были опубликованы в 2011 году в престижном научном издании Proceedings of the National Academy of Science[81], что значительно укрепило позиции теории колебаний, по крайней мере в объяснении механизма обоняния плодовых мушек.

Год спустя Скулакис и Турин присоединились к группе исследователей из Университетского колледжа Лондона с целью продолжить поиски ответа на деликатный вопрос о том, основан ли механизм обоняния человека на распознавании колебаний молекулярных связей. Вновь не полагаясь на тонкий нюх Турина, команда ученых пригласила для участия в пробах на запах 11 испытуемых. Сначала ученые подтвердили результаты, полученные Восшеллом и Келлером: испытуемые не различали по запаху обычный и дейтеризованный ацетофенон. Однако ученые предположили, что восьми атомов в углерод-водородной связи может быть недостаточно. Возможно, сигнал, поступающий от дейтеризованной формы ацетофенона, настолько слаб, что человеческий нос его просто не улавливает. Ученые решили исследовать восприятие людьми веществ, отличающихся более сложной структурой и имеющих запах мускуса (например, тех, что показаны на рис. 5.2).

В каждой молекуле подобного вещества содержится 28 атомов водорода, и все они могут быть заменены на дейтерий. На этот раз, в отличие от проб с ацетофеноном, все 11 испытуемых легко определили разницу между обычной и сильно дейтеризованной формой мускуса. Возможно, люди и правда способны чувствовать разницу между молекулами, химические связи которых различаются спектром колебаний.

Физики принюхиваются

Одной из основных претензий, выдвигаемых против теории квантовых колебаний, является мнение о неубедительности ее теоретических оснований. Громче всех в наши дни это мнение опровергает команда физиков из Университетского колледжа Лондона, сунувших свои носы (простите мне этот каламбур) в квантовые расчеты, на которых строится теория туннелирования. Физики пришли к выводу о том, что теория «согласуется с лежащей в ее основе квантовой физикой и с тем, что нам известно о природе обоняния, при условии, что рецептор обладает определенными общими свойствами»[82]. Одна из исследователей, Дженни Брукс, даже предложила решение, казалось бы, неразрешимой проблемы зеркальных изомеров вроде лимонена и дипентена (см. рис. 5.3), характеризующихся одинаковыми спектрами колебаний и имеющих при этом совершенно разные запахи.

Если быть точными, первым к решению данной проблемы пришел преподаватель и научный руководитель Дженни, ныне покойный профессор Маршалл Стоунхэм, сформулировавший идею, которая позднее стала известна как модель пластиковой карточки. Стоунхэм был одним из ведущих британских физиков своего поколения. Сфера его научных интересов простиралась от вопросов ядерной безопасности до квантовых вычислений, биологии и даже музыки (он прекрасно играл на валторне). Теория Стоунхэма и Брукс представляет собой всего лишь доработку в терминах квантовой механики идеи Роберта Райта о том, что в механизме обоняния одинаково важная роль отводится как форме обонятельного рецептора, так и колебаниям связей внутри молекулы запаха. Ученые предположили, что связывающий карман обонятельного рецептора работает по тому же принципу, что и аппарат, считывающий пластиковые карточки. В пластиковую карту встроена магнитная полоса, обусловливающая возникновение электрического тока в считывающем аппарате. Однако далеко не любая карточка может быть вставлена в считывающий аппарат: она должна иметь определенный размер и толщину, магнитная полоса должна находиться с определенной стороны. Все эти условия должны быть соблюдены до использования, то есть до того, как вы начнете проверять, считывает машина вашу карточку или нет. Брукс совместно с коллегами предположила, что обонятельный рецептор работает по тому же принципу. Сначала, как утверждают ученые, молекула запаха должна войти в лево- или правосторонний хиральный связывающий карман, подобно тому как кредитка входит в щель считывающего аппарата. Итак, пахучие вещества с одинаковыми химическими связями, но различными формами молекул — лево- и правосторонней — будут «считываться» разными рецепторами. Только после того как молекула запаха попадает в подходящий рецептор, она может запустить тесно связанное с колебаниями электронное туннелирование и привести в действие обонятельный нейрон. И поскольку левосторонняя молекула захватывается левосторонним рецептором, ее запах будет сильно отличаться от запаха правосторонней молекулы, захватываемой правосторонним рецептором.

1 ... 45 46 47 48 49 50 51 52 53 ... 99
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?