Левое полушарие-правильные решения. Мыслить и действовать. Как интуиция поддерживает логику - Фил Розенцвейг
Шрифт:
Интервал:
Закладка:
Модели точны отчасти потому, что в них отсутствуют распространенные мешающие ошибки. Люди, страдая предубеждением новизны, зачастую придают слишком большое значение свежей информации, умаляя ранее полученные данные и уделяя слишком много внимания легко доступным сведениям. Кроме того, мнения сильно зависят от контекста: если вы предоставите одну и ту же информацию в двух разных контекстах, велика вероятность, что человек примет разные решения. Ни одна из этих проблем не касается моделей. К тому же с их помощью можно надежно и точно обрабатывать большое количество данных.
Десятилетиями модели решений были важны в самых различных областях. Колледжи полагаются на модели для оценки заявлений абитуриентов. С помощью расчетов переменным (средний балл, результаты тестов, рекомендации и дополнительные занятия) присваивается относительный вес, и колледжи могут лучше предсказать академические успехи абитуриента, чем по школьной характеристике. Приемные комиссии не могут применить единый стандарт для большой группы абитуриентов, а с помощью модели это возможно. Банки используют модели для предоставления кредитов. В былые времена сотрудники банков опирались на три показателя: кредитную историю, возможности и характер. Они спрашивали, имеет ли заявитель хорошую кредитную историю? Остается ли у него после других расходов достаточно денег, чтобы вносить платежи? Производит ли он впечатление заслуживающего доверия? Это не плохие эмпирические правила, но сотрудники банков, как и все остальные, ошибаются. С помощью моделей можно выстроить более точный прогноз, будет ли погашен кредит, и с течением времени при постоянном добавлении текущей информации предсказания становятся все более точными.
В последние годы мы чаще стали использовать модели решений. Эта комбинация – накопление огромного количества данных, хранящихся в таких местах, как Центр обработки данных АНБ в Юте, со все более усложняющимися алгоритмами, – привела к успехам в различных областях. Некоторые модели используются для решения чрезвычайно важных задач. Palantir в Пало-Альто постоянно анализирует огромное количество финансовых операций в целях выявления отмывания денег и использования мошеннических кредитных карт. Он также служит американским военным, позволяя изучить в реальном времени фотографии подозрительных объектов, в которых могут быть придорожные бомбы – так называемые импровизированные взрывные устройства или СВУ. Находящаяся в Сан-Франциско Климатическая корпорация годами собирает данные о температуре и осадках по всей стране для прогнозирования погоды, чтобы помочь фермерам решить, что и когда сажать. В результате управление рисками становится более эффективным, и урожайность повышается.[241]
Другие модели используются ради развлечения. Например, Гарт Сандем и Джон Тирни разработали модель, помогающую пролить свет на одну из величайших мировых тайн современности: как долго продлится текущий брак знаменитости? Собирая всевозможные факты и вводя их в компьютер, они придумали единую теорию знаменитостей Сандема/Тирни, по которой определяется продолжительность брака в зависимости от возраста супругов (старше – лучше), прошлых браков (неудачные браки считались неблагоприятным признаком), того, как долго пара встречалась (дольше – лучше), известности (измерялась путем поиска в Google) и сексапильности (для тех, кто выкладывал изображения в полураздетом виде). С небольшим количеством переменных модель хорошо работала для предсказания судьбы браков на ближайшие несколько лет.[242]
Модели продемонстрировали замечательные возможности в областях, считающихся, как правило, вотчиной экспертов. Два политолога, Эндрю Мартин и Кевин Куинн, разработали модель прогнозирования решений Верховного суда (поддержат или отменят девять судей решение суда низшей инстанции) на основе всего шести переменных.[243] Несмотря на длинные рассуждения, подробное обсуждение прецедента и мудреные правовые нормы, большинство решений принимается на основании нескольких ключевых факторов. Но модель использовали ретроспективно. Чтобы убедиться, что с ее помощью можно предсказывать решения, профессор права из Пенсильванского университета Тед Ругер применил ее к предстоящей сессии Верховного суда. Он по отдельности попросил 83 экспертов сделать прогнозы по одним и тем же случаям. В конце года он сравнил два набора прогнозов и обнаружил, что модель сработала в 75 % случаев, а мнение экспертов оправдалось в 59 %. Модель оказалась ближе к истине.[244]
Модели могут хорошо работать даже в случаях, казалось бы, субъективных. Как вы думаете, в каком случае вернее прогноз качества вина: когда за дело берется знаток с хорошим вкусом и многолетним опытом или когда вводится статистическая модель, не различающая ни вкуса, ни запаха? Большинство из нас скажет, что знаток. Мы представляем себе элегантного человека; подняв бокал темно-красного вина, он медленно его поворачивают, вдыхая букет и смакуя тонкие оттенки – здесь ежевика, там корица. Мы считаем, что личный опыт, накопленный за много лет на виноградниках Бургундии и Напы, позволит точно оценить урожай. Факты говорят о другом. Использовав информацию о Бордо, главной винодельческой области Франции, принстонский экономист Орли Эшенфельтер разработал модель, позволявшую предсказать качества вина из определенного урожая на основе всего трех переменных: количество осадков зимой, во время сбора урожая и средняя температура во время вегетационного периода.[245] К удивлению многих, модель предоставляет значительно более точные оценки.[246]
Последние два примера приведены профессором права Йельского университета Яном Айресом в книге «Super Crunchers: Why Thinking-by-Numbers Is the New Way to Be Smart» («Суперсолдаты: Думай числами – будешь умным»). Айрес объяснил, что преимущество моделей состоит в отсутствии распространенных предубеждений. Неудивительно, что он упомянул самоуверенность, отметив, что люди «чертовски самоуверенны в своих прогнозах и медленно их меняют перед лицом новых доказательств»[247] (в качестве доказательства Айрес привел исследование, не раз упомянутое мною, когда люди должны указать диапазон 90-процентной уверенности при ответе на вопросы на общую эрудицию. Они постоянно зауживают диапазон. Айрес прав: мы склонны к сверхточности, но знаем, что сверхточность не свидетельствует о переоценке или смещении). У моделей предубеждений нет: в них объективно взвешиваются все данные, так что не удивительно, что результат лучше.