Почему Е=mc?? И почему это должно нас волновать - Джефф Форшоу
Шрифт:
Интервал:
Закладка:
Рис. 14
Рис. 15
Фейнман сделал нечто большее, чем просто ввел диаграммы. Он сопоставил с каждой вершиной математические правила, выведенные непосредственно из основного уравнения. Эти правила позволяют физикам строить сложные диаграммы и рассчитывать вероятность процесса, отображенного соответствующей диаграммой. Например, когда два электрона встречаются друг с другом, самая простая диаграмма, которая позволяет это отобразить, выглядит так, как показано на рис. 16, a. Мы говорим, что происходит рассеяние электронов посредством обмена фотонами. Эта диаграмма построена с помощью склейки двух вершин «электрон-фотон». Вы можете представить себе, как два электрона сближаются, двигаясь слева, разлетаются друг от друга в результате фотонного обмена и продолжают свой путь направо. На самом деле мы незаметно применили здесь еще одно правило: нам разрешается менять частицу на античастицу (и наоборот) при условии, что затем мы превратим ее в исходную частицу. На рис. 16, б показан еще один возможный способ сшивания вершин. Этот рисунок немного сложнее, но он также описывает вероятный способ взаимодействия между двумя электронами. После некоторых размышлений вы согласитесь, что существует бесконечное множество диаграмм и все они отображают возможные способы рассеяния электронов. К счастью для тех из нас, кому приходится выполнять расчеты, одни диаграммы более важны, чем другие. На самом деле сформулировать правило достаточно легко: в общем случае самые значимые – диаграммы с наименьшим количеством вершин. Следовательно, в случае пары электронов диаграмма на рис. 16, a наиболее важна, поскольку содержит всего две вершины. Это значит, что мы можем получить достаточно полное представление о происходящем, рассчитав только эту диаграмму с использованием правил Фейнмана. Замечательно то, что посредством математики можно получить описание физики взаимодействия двух электрических заряженных частиц друг с другом в том виде, в котором это взаимодействие открыли Фарадей и Максвелл. Но теперь мы можем заявить, что гораздо лучше понимаем происхождение этого физического процесса, так как установили его исходя из калибровочной симметрии. Кроме того, математические расчеты на основании правил Фейнмана дают нам нечто большее, чем просто еще один подход к пониманию физики XIX столетия. Даже в случае взаимодействия двух электронов мы можем вычислить небольшие поправки к предсказаниям Максвелла, которые позволят усовершенствовать его уравнения для их более точного соответствия экспериментальным данным. Следовательно, основное уравнение открывает новые горизонты. На самом деле мы только начинаем осваивать эту тему. Как мы уже говорили, стандартная модель описывает все, что нам известно о взаимодействии частиц друг с другом, и представляет собой исчерпывающую теорию сильного, слабого и электромагнитного взаимодействия, которой удалось даже объединить два из них. В эту амбициозную систему понимания того, как все взаимодействует во Вселенной, не включена только гравитация.
Рис. 16
Но давайте вернемся к нашей теме. Каким образом правила Фейнмана, позволяющие кратко сформулировать суть стандартной модели, задают способы, с помощью которых мы можем разрушать массу и превращать ее в энергию? Как мы можем применить эти правила для лучшего использования уравнения E = mc²? Для начала вспомним важный вывод, к которому мы пришли в главе 5: свет состоит из частиц без массы. Другими словами, фотоны – это частицы, не имеющие массы. В связи с этим мы можем нарисовать интересную диаграмму – как показано на рис. 17. Электрон и антиэлектрон (позитрон) сталкиваются друг с другом и аннигилируют, образуя при этом один фотон (давайте обозначим для ясности электрон символом e−, а позитрон – e+). Правила Фейнмана допускают такое взаимодействие. Эта диаграмма заслуживает особого внимания, поскольку отражает ситуацию, в которой мы начали с небольшого количества массы (электрон и позитрон имеют определенную массу), а закончили ее полным отсутствием (фотоном). Это первичный процесс разрушения материи, в ходе которого вся исходная энергия, заключенная в массе электрона и антиэлектрона, высвобождается в виде энергии фотона. Однако здесь есть одно противоречие. Аннигиляция в один фотон запрещена правилом, согласно которому все происходящее должно подчиняться законам сохранения энергии и импульса одновременно, а для данного процесса это невыполнимо (это не совсем очевидно, но мы не станем приводить здесь доказательства). Однако это противоречие легко обойти, просто образовав два фотона. На рис. 18 показана соответствующая диаграмма Фейнмана, где исходная масса снова полностью разрушилась и превратилась в энергию, в данном случае в два фотона. Процессы такого рода сыграли ключевую роль на раннем этапе формирования Вселенной, когда материя и антиматерия почти полностью уничтожили друг друга именно в ходе подобного взаимодействия. Сейчас мы наблюдаем остатки этого взаимного уничтожения. Астрономы установили, что на каждую частицу, существующую во Вселенной, приходится около 100 миллиардов фотонов. Другими словами, из каждых 100 миллиардов частиц материи, возникших после Большого взрыва, выжила только одна. Все остальные, как наглядно показывает диаграмма Фейнмана, использовали имеющуюся у них возможность избавиться от своей массы и превратиться в фотоны.
Рис. 17
Рис. 18
На самом деле то вещество во Вселенной, из которого созданы звезды, планеты и люди, представляет собой крохотный остаток, сохранившийся после грандиозной аннигиляции массы, произошедшей в самом начале формирования Вселенной. Тот факт, что вообще что-то осталось, – не просто большая удача, а настоящее чудо! Мы до сих пор не совсем понимаем, почему это произошло. Вопрос, почему Вселенная не наполнена только светом и больше ничем, по-прежнему остается открытым, и во всем мире проводятся эксперименты, которые должны нам помочь найти на него ответ. В количестве умных идей нет недостатка, но нам еще предстоит найти убедительные экспериментальные данные или доказательства того, что все они ошибочны. Советский ученый Андрей Сахаров выполнил новаторскую работу в этой области. Он первым сформулировал критерии, которым должна удовлетворять любая успешная теория, преследующая цель ответить на вопрос, почему после Большого взрыва вообще осталась материя.