Жизнь на грани. Ваша первая книга о квантовой биологии - Джонджо МакФадден
Шрифт:
Интервал:
Закладка:
Преимущества квантового блуждания над классическим случайным блужданием можно оценить, вернувшись к нашему медлительному пьянице и представив, что в баре, который он покинул, произошла утечка и из его дверей вытекает вода. В отличие от нашего нетрезвого героя, который должен выбрать один путь, волны воды, вытекающие из бара, могут двигаться во всех возможных направлениях. Наш пьяница вскоре обнаружит, что его обгоняют, так как водные потоки движутся по улице просто пропорционально времени, а не его квадратному корню. Итак, если за одну секунду они продвинутся на один метр, то через две секунды они протекут два метра, а через три секунды — три метра и т. д. Кроме того, как атом в суперпозиции из опыта с двумя щелями, вода путешествует во всех возможных направлениях одновременно, и какая-то часть волны определенно достигнет дома пьяного задолго до нетрезвого путешественника.
Статья Флеминга вызвала свою волну удивления и изумления, которая распространилась далеко за пределы журнального клуба МТИ. Но некоторые комментаторы вскоре обратили внимание, что опыты были проведены на изолированных комплексах FMO, охлажденных до 77 К (–196 °C): это намного холоднее, чем любая температура, пригодная для фотосинтеза или даже для жизни растений, но достаточно холодно, чтобы отложить эту досадную декогерентность. Насколько значимы были эти охлажденные бактерии для всего, что происходит в жарком и беспорядочном внутреннем мире растительных клеток?
Вскоре это станет ясно, однако квантовая когерентность не ограничивается охлажденными комплексами FMO. В 2009 году Йен Мерсер в Университетском колледже Дублина обнаружил квантовое биение в другой бактериальной системе фотосинтеза (или, для краткости, фотосистеме) под названием «светособирающий комплекс II» (LHC2), который очень похож на фотосистему растений, но при нормальных температурах, при которых растения и микробы обычно осуществляют фотосинтез[55]. Затем, в 2010 году, Грег Шоулз в Университете Онтарио продемонстрировал квантовое биение фотосистемы группы водорослей (которые, в отличие от высших растений, не имеют корней, стеблей и листьев) под названием «криптофиты». Эти водоросли чрезвычайно изобильны, до такой степени, что они связывают столько атмосферного углерода (из атмосферного углекислого газа), как и высшие растения[56]. Примерно в то же время Грег Энджел продемонстрировал квантовое биение в том же комплексе FMO, который изучали в лаборатории Грэма Флеминга, но теперь при намного более высоких, совместимых с жизнью, температурах[57]. В таком случае вы можете решить, что этот замечательный феномен ограничен только бактериями и водорослями, однако Тесса Калхоун и ее коллеги из лаборатории Флеминга в Беркли недавно обнаружили квантовое биение в другой системе LHC2, на этот раз в шпинате[58]. LHC2 присутствует во всех высших растениях и содержит 50 % всего хлорофилла на планете.
Прежде чем двигаться дальше, мы кратко опишем, как используется полученная из солнечного света энергия экситона, как описывал Фейнман, чтобы оторвать «этот кислород от углерода… оставляя углерод и воду, чтобы создать субстанцию дерева» — или яблоко.
После того как достаточное количество энергии достигает реакционного центра, пара молекул хлорофилла (под названием Р680) испускает электроны. Мы узнаем немного больше о том, что происходит в реакционном центре, в главе 10, и это потрясающее место, в котором может происходить другой новейший квантовый процесс. Источником этих электронов является вода (которая, как мы помним, выступает одним из ингредиентов в фейнмановском описании фотосинтеза). Как мы выяснили в предыдущей главе, захват электронов из любого вещества называется окислением и именно этот процесс имеет место во время горения. Когда дерево горит на воздухе, например, атомы кислорода отрывают электроны от атомов углерода. Электроны на внешней орбите углерода очень слабо удерживаются, поэтому углерод горит очень легко. Однако в воде они удерживаются очень крепко: системы фотосинтеза уникальны тем, что это единственное место в мире, где вода «сгорает» с выходом электронов[59].
Пока все идет хорошо: сейчас мы имеем источник свободных электронов благодаря энергии, доставленной экситонами в хлорофилл. Далее растение должно послать эти электроны туда, где они будут использованы в работе. Сначала они захватываются описанным переносчиком электронов, НАДФН. Мы уже встречали похожую молекулу, НАДН, в предыдущей главе, где она участвовала в переносе электронов, захваченных от питательных веществ, таких как сахара, к дыхательной цепи ферментов в энергетических клеточных органеллах, митохондриях. Если помните, захваченные электроны, доставленные к митохондриям переносчиком НАДН, затем идут по дыхательной цепи ферментов как своего рода электрический ток, который используется для переноса протонов через мембрану, а обратный поток этих протонов используется для получения клеточного энергоносителя, АТФ. Очень похожий процесс используется для получения АТФ в хлоропластах растений. НАДФН захватывает электрон и переносит его к цепи ферментов, которые подобным образом выносят протоны через мембрану хлоропласта. Обратный поток этих протонов используется для получения молекул АТФ, которые впоследствии могут обеспечивать энергией многие энергозатратные процессы в растительной клетке.
Но действительный процесс фиксации углерода, захват атомов углерода из углекислого газа воздуха и их использование для получения энергоемких органических молекул, таких как сахара, происходит вне тилакоида, но все еще внутри хлоропласта. Этот процесс проходит с участием большой молекулы фермента под названием RuBisCO, вероятно наиболее распространенного белка в мире, так как он предназначен для выполнения величайшей работы: создание практически всей мировой биомассы. Этот фермент связывает атом углерода, оторванный от углекислого газа, в молекулу простого пятиуглеродного сахара под названием рибулозо-1,5-бифосфат для получения шестиуглеродного сахара. Чтобы достичь такого мастерства, необходимо присутствие двух ингредиентов: электронов (доставляемых НАДФН) и источника энергии (АТФ). Оба ингредиента являются продуктами светозависимых процессов фотосинтеза.