Книги онлайн и без регистрации » Домашняя » Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист

Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 30 31 32 33 34 35 36 37 38 ... 66
Перейти на страницу:

Чтобы понять, почему заполнение уровней n = 3 и l = 2 откладывается до скандия, нужно объяснить, почему уровни n = 4, l = 0, на которых находятся электроны в калии и кальции, обладают меньшей энергией, чем уровни n = 3, l = 2.

Помните, что «основное состояние» атома будет характеризоваться конфигурацией электронов с самой низкой энергией, поскольку в любом возбужденном состоянии атом будет всегда терять энергию при испускании фотона. И говоря, что «этот атом содержит такие-то электроны, находящиеся на таких-то энергетических уровнях», мы сообщаем вам конфигурацию электронов с самой низкой энергией. Конечно, мы еще не пытались подсчитывать энергетические уровни, так что пока не можем и расположить их по возрастанию или убыванию энергии. Подсчитать разрешенную для электрона энергию для атомов более чем с двумя электронами на самом деле очень сложно, и даже случай для двух электронов (атом гелия) не так-то прост. Предположение о ранжировании уровней по увеличению числа n – результат гораздо более простых расчетов по атому водорода, для которого верно, что уровень n = 1 обладает наименьшей энергией, за ним следуют уровни n = 2, потом уровни n = 3 и т. д.

Очевидный вывод из сказанного – элементы на правом краю периодической таблицы соответствуют атомам, множество уровней которых заполнено до конца. Например, для гелия заполнен уровень n = 1, для неона – уровень n = 2, у аргона плотно заселен уровень n = 3, по крайней мере для l = 0 и l = 1. Мы можем еще немного развить эти идеи, таким образом поняв ряд очень важных положений в химии. К счастью, мы пишем не учебник по химии, так что можно говорить кратко. Может показаться, что мы пытаемся уложить всю тему в один абзац, но все же попробуем.

Основное наблюдение в том, что атомы могут скрепляться, обмениваясь электронами: мы встретимся с этой идеей в следующей главе, когда будем разбираться, как пара атомов водорода соединяется в молекулу водорода. Общее правило таково: элементы «предпочитают» полностью заполнять все свои энергетические уровни. В случае с гелием, неоном, аргоном и криптоном уровни уже заполнены, так что этим элементам уже «хорошо»: им «неинтересно» реагировать с другими. Другие же элементы могут «пытаться» заполнить свои уровни, обмениваясь электронами с другими элементами. Водороду, например, нужен один дополнительный электрон для заполнения уровня n = 1. Этого можно достичь, обменявшись электронами с другим атомом водорода. Таким образом формируется молекула водорода; ее химическая запись – H2. Это обычная форма существования водорода. У углерода 4 электрона из возможных 8 на уровнях n = 2, l = 0 и l = 1, и ему «хотелось бы» получить еще 4, чтобы заполнить все уровни. Этого можно добиться путем соединения с четырьмя атомами водорода. Образуется CH4 – газ, известный под названием метан.

Атом углерода может соединиться и с двумя атомами кислорода, которые сами нуждаются в двух электронах, чтобы закончить уровень n = 2. Это приводит к образованию CO2 – двуокиси углерода. Кислород может закончить свой уровень и с помощью двух атомов водорода, образуя воду – H2O. И так далее. Это основы химии: атомы стремятся заполнить свои энергетические уровни электронами, даже посредством реакции с соседом. Это их «желание», которое восходит к стремлению находиться в состоянии наименьшей энергии, управляет образованием всех соединений – от воды до ДНК. В мире, который богат на водород, кислород и углерод, легко понять, почему так часто встречаются углекислый газ, вода и метан.

Это все очень вдохновляет, но нужно объяснить и последний кусочек головоломки: почему только два электрона могут занимать каждый энергетический уровень? Так утверждает принцип Паули, и он очень важен для связи в единое целое всего, что мы обсуждаем. Без него электроны толпились бы на низшем энергетическом уровне вокруг каждого ядра, и никакой химии не было бы. Это не самая приятная перспектива, потому что тогда не было бы молекул, а следовательно, и жизни на Земле.

Утверждение о том, что каждый энергетический уровень могут занимать два и только два электрона, кажется каким-то произвольным. До того как эта идея была впервые предложена, никто не высказывал предположений по этому поводу. Первый прорыв в этой области был совершен Эдмундом Стоунером, сыном профессионального игрока в крикет (который прошел восемь калиток в игре с Южной Африкой в 1907 году, если вы читаете Wisden Cricketers’ Almanack) и бывшим студентом Резерфорда, впоследствии возглавившим физический факультет в Университете Лидса. В октябре 1924 года Стоунер предположил, что на каждом энергетическом уровне (n, l, m) должно находиться два электрона. Паули развил идеи Стоунера и в 1925 году опубликовал правило, которому годом позже Дирак присвоил его имя. Принцип Паули состоит в том, что ни одна пара электронов в атоме не может иметь одни и те же квантовые числа. Однако он столкнулся с проблемой: все указывало на то, что на самом деле два электрона могут иметь одинаковый набор значений n, l и m. Паули обошел проблему, просто введя новое квантовое число. Это был анзац: он не знал, чему соответствует это число, но оно могло принимать одно из всего двух значений. Паули признавался: «Более точно причин существования этого правила мы указать не можем». Новое открытие случилось в 1925 году и было изложено в работе Джорджа Уленбека и Сэмюэла Гаудсмита. В поисках возможности проведения точных измерений атомных спектров они связали дополнительное квантовое число Паули с реальным физическим свойством электрона, которое носит название спин[32].

Основная идея спина довольно проста и восходит еще к 1903 году: она значительно старше квантовой теории. Через несколько лет после открытия собственно электрона немецкий физик Макс Абрахам предположил, что электрон – это мельчайшая вращающаяся электрически заряженная сфера. Если бы это было верно, то электроны подвергались бы действию магнитных полей в зависимости от ориентации поля по отношению к оси их вращения. В статье 1925 года, опубликованной через три года после смерти Абрахама, Уленбек и Гаудсмит отмечали, что модель вращающегося шара не может быть верной, потому что для подтверждения экспериментальных данных электрон должен вращаться быстрее скорости света. Но сам дух идеи был верен: у электрона действительно есть свойство под названием спин, которое действительно влияет на его поведение в магнитном поле. Однако на самом деле идея спина – это непосредственное и довольно тонкое последствие теории специальной относительности Эйнштейна, получившее должную оценку только после того, как Поль Дирак в 1928 году записал уравнение, описывающее квантовое поведение электрона. Для наших целей сейчас нужно только указать, что существует два типа электрона, которые мы будем называть «спин вверх» и «спин вниз». Они отличаются противоположными значениями момента вращения, то есть словно бы вращаются в противоположных направлениях. Очень жаль, что Абрахам лишь немного не дожил до открытия истинной природы спина электрона, потому что так и не отказался от своего подозрения, что электрон – это мельчайшая сфера. В некрологе Абрахаму в 1923 году Макс Борн и Макс фон Лауэ писали: «Он был достойным оппонентом, сражался достойным оружием и не старался замаскировать поражения причитаниями и не относящимися к делу аргументами… Он любил свой абсолютный эфир, свои уравнения поля, свой неподвижный электрон, как повзрослевший человек любит свою первую страсть, воспоминания о которой не затмит никакой последующий опыт». Если бы все наши оппоненты были такими, как Абрахам!

1 ... 30 31 32 33 34 35 36 37 38 ... 66
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?