Книги онлайн и без регистрации » Домашняя » Энергия, секс, самоубийство. Митохондрии и смысл жизни - Ник Лэйн

Энергия, секс, самоубийство. Митохондрии и смысл жизни - Ник Лэйн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 114
Перейти на страницу:

Представьте себе гидроэлектрическую плотину на реке. При низком расходе воды появляется риск затопления, но его можно снизить, построив водоотводный канал. Так и в дыхательной цепи непрерывность потока электронов можно сохранить за счет его разобщения с синтезом АТФ. Тогда некоторые протоны, вместо того, чтобы течь через главный шлюз плотины (АТФазу), будут направлены через отводные каналы (мембранные поры). Такой непрерывный поток помогает предотвращать проблемы, связанные с переполнением хранилища электронов, готовых образовать свободные радикалы; а это, как мы увидим потом, очень важно для здоровья.

Помимо активного транспорта, силу протонов можно направить на совершение и другой работы. От протон-движущей силы зависит, например, локомоция бактерий, как показал американский микробиолог Фрэнклин Харольд и его коллеги в 1970-е гг. Многие бактерии движутся за счет вращения жестких винтообразно закрученных жгутиков, отходящих от поверхности клетки. Скорость их движения при этом может достигать нескольких сотен длин клетки в секунду. Белок, вращающий жгутик, представляет собой миниатюрный роторный двигатель, в чем-то похожий на АТФазу, и его приводит в действие поток протонов через главный вал.

По сути, бактерии работают на протонах. В некоторых областях жизнедеятельности клетки АТФ, эта универсальная энергетическая валюта, не в ходу. У бактерий и поддержание постоянства внутренней среды клетки (активный транспорт молекул), и локомоция (движение за счет жгутиков) зависят не от АТФ, а от энергии протонов. Это объясняет, почему дыхательная цепь закачивает в клетку больше протонов, чем нужно для одного только синтеза АТФ, и почему так трудно точно определить, сколько молекул АТФ образуются в результате прохода одного электрона. Дело в том, что кроме синтеза АТФ протонный градиент крайне необходим для многих других аспектов жизнедеятельности клетки, и все они понемногу черпают из него.

Важность протонного градиента также объясняет странную склонность АТФазы переключаться в обратный режим и закачивать протоны за счет «сжигания» АТФ. На первый взгляд это свойство АТФазы может показаться обузой для клетки, потому что запасы АТФ при этом быстро истощаются. Однако если мы поймем, что протонный градиент важнее АТФ, все встает на свои места. Чтобы выжить, бактериям нужна полная «зарядка» протон-движущей силой; так, галактический крейсер в «Звездных войнах» должен был иметь полностью работоспособное силовое поле перед тем, как атаковать космическую флотилию империи. Протон-движущая сила заряжается в процессе дыхания. Если дыхание по каким-то причинам невозможно, бактерии производят АТФ за счет брожения. Тогда все происходит в обратном порядке. АТФаза тут же расщепляет свежеиспеченную АТФ и использует получившуюся энергию для трансмембранной закачки протонов, сохраняя заряд, что равнозначно аварийному ремонту силового поля. Все остальные задачи, требующие АТФ, даже такие важные, как репликация ДНК и размножение, могут подождать. С этой точки зрения можно сказать, что основная функция брожения — это поддержание протон-движущей силы. Сохранение протонного заряда имеет для клетки более высокий приоритет, чем сохранение запаса АТФ для других, пусть даже очень важных дел.

Как мне кажется, все это указывает на глубокую древность процесса закачки протонов. Это первая и главная потребность бактериальной клетки, ее реанимационный аппарат. Такой механизм объединяет все три домена жизни, он лежит в основе всех форм дыхания, фотосинтеза, а также многих аспектов существования бактерий, включая поддержание постоянства внутренней среды и локомоцию. Короче говоря, это фундаментальная особенность жизни. А значит, есть веские основания полагать, что само происхождение жизни было тесно завязано на энергию протонного градиента.

6. Происхождение жизни

Изучение истоков жизни — одно из самых захватывающих научных направлений. На фоне бурления теорий, предположений, идей и даже данных в этой области меркнут лучшие приключенческие романы. У меня нет возможности подробно обсуждать столь широкую тему, поэтому я ограничусь несколькими замечаниями о роли хемиосмоса, но чтобы вы могли в полной мере оценить ее, мне придется сначала широкими мазками набросать общую картину.

Эволюция жизни в большой мере зависит от силы естественного отбора, а та, в свою очередь, зависит от наследования признаков, на которые может действовать естественный отбор. Мы наследуем гены, состоящие из ДНК, но ДНК — сложная молекула, и она не могла так просто взять и появиться ни с того ни с сего. Более того, как я говорил во введении, ДНК химически инертна. Вспомним, что ДНК, по сути дела, только кодирует белки, и даже это происходит за счет более активного посредника — РНК, которая физически транслирует код ДНК в последовательность аминокислот в белке. Активными ингредиентами, обусловливающими жизнь, являются именно белки. Только они обладают структурным и функциональным разнообразием, способным удовлетворить запросы даже самых простых жизненных форм. Естественный отбор усовершенствовал конкретные белки в соответствии с конкретными требованиями. Прежде всего, белки нужны для репликации ДНК и образования РНК, ведь естественный отбор невозможен без наследственности, а белки, какими бы удивительными они не были, имеют недостаточно повторяющуюся структуру, чтобы на их основе можно было бы создать хороший код наследственности. Поэтому происхождение генетического кода — это на самом деле проблема курицы и яйца. Для возникновения белков нужна была ДНК, но для возникновения ДНК нужны были белки. Как же все началось?

Большинство специалистов сходятся на том, что центральную роль в этом процессе занимал посредник — РНК. Она проще, чем ДНК, ее даже можно «собрать» в пробирке; не будет слишком большой натяжкой допустить, что когда-то, скажем, на ранней Земле или в космосе, она образовалась спонтанно. Немало органических молекул, включая некоторые «строительные блоки» РНК, были обнаружены на кометах. Подобно ДНК, РНК может реплицироваться, а на такую реплицирующую единицу может действовать естественный отбор. РНК также может непосредственно кодировать белки (что она и делает по сей день) и потому является связующим звеном между матрицей и функцией. В отличие от ДНК, РНК не является химически инертной. Она «складывается», образуя сложные формы, и может, подобно ферментам, катализировать некоторые химические реакции (молекулы РНК, обладающие ферментативной активностью, называются рибозимами). Такие рассуждения легли в основу гипотезы первичного «мира РНК», в котором естественный отбор действовал на независимо реплицирующиеся молекулы РНК; они постепенно усложнялись, а затем им на смену пришла более устойчивая и эффективная комбинация — ДНК и белки. Если этот рекламный ролик пробудил у вас аппетит, могу порекомендовать «Эволюционирующую жизнь» Кристиана де Дюва в качестве первого блюда.

«Мир РНК» — красивая гипотеза, но у нее есть два серьезных недостатка. Во-первых, рибозимы — не слишком разнообразные катализаторы, и даже если допустить, что они обладали зачаточной каталитической эффективностью, их способность породить сложный мир стоит под большим вопросом. На мой взгляд, они хуже подходят на роль исходных катализаторов, чем, например, минералы. Металлы и минералы, в том числе железо, сера, марганец, медь, магний и цинк, встречаются в центре молекул многих ферментов, и во всех этих случаях за катализ ферментативной активности отвечает именно минерал (говоря химическим языком, простетическая группа), а не белок, который только повышает эффективность реакции, не влияя на ее природу.

1 ... 29 30 31 32 33 34 35 36 37 ... 114
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?