Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас
Шрифт:
Интервал:
Закладка:
Как важно быть щелочью
Щелочные гидротермальные источники обеспечивают точно те условия, которые требуются для возникновения жизни: мощный приток углерода и энергии, проходящий над неорганическими катализаторами, и специфические ограничения этого потока, которые позволяют добиться высоких концентраций органики. Гидротермальные жидкости насыщены растворенным водородом и, в меньших количествах, другими восстановленными газами, включая метан, аммиак и сероводород (который в щелочной среде превращается в сульфид-ион). Гидротермальные источники Затерянного города и другие известные щелочные источники имеют микропористую структуру: у них нет главного “жерла”. Составляющая их порода похожа на минерализованную губку, где крошечные, от микрометров до миллиметров в диаметре, поры разделены тонкими стенками, вместе образуя огромный лабиринт, сквозь ходы которого просачиваются наружу гидротермальные жидкости. Из-за того, что эти жидкости не перегреваются, контактируя с магмой, их температура способствует не только синтезу органических молекул, но и тому, что жидкости вытекают медленно. Вместо того чтобы неистово извергаться, жидкости спокойно протекают над каталитическими поверхностями. И гидротермальные источники существуют тысячелетиями – как Затерянный город, которому минимум 100 тыс. лет. Рассел указывает, что если перевести в более подходящие для химических процессов единицы времени, получится 1017 микросекунд. Неимоверно долго!
Теплые течения по лабиринту крошечных пор способствуют концентрированию органических молекул (в том числе аминокислот, жирных кислот и нуклеотидов), обеспечивая возрастание концентраций до значений, в миллионы раз превышающих изначальные. Это становится возможным благодаря термофорезу. Принцип примерно такой же, как в стирке: в стиральной машине мелкое белье нередко скапливается внутри большого пододеяльника. Оба этих явления зависят от кинетической энергии. При высоких температурах маленькие молекулы (и белье) кружатся и танцуют, вольные двигаться в любом направлении. А по мере того как гидротермальные жидкости смешиваются друг с другом и остывают, кинетическая энергия органических молекул падает, и они уже вовсе не так свободны (это и происходит с носками, когда их окутывает одеяло). Это означает, что они, скорее всего, уже не покинут место, где оказались. Так органические молекулы скапливаются в областях с более низкой кинетической энергией (рис. 13). Эффективность термофореза отчасти зависит от размера молекул: крупные, вроде нуклеотидов, концентрируются сильнее, чем молекулы меньшего размера. Низкомолекулярные конечные продукты, например метан, легко покидают гидротермальный источник.
Итак, постоянное гидротермальное течение сквозь микропористые стенки источников должно концентрировать органику путем активного динамического процесса, который не изменяет равновесное состояние (как, например, вымораживание или упаривание), а, напротив, сам является равновесным состоянием. Более того, термофорез обеспечивает химические взаимодействия органических молекул, благодаря чему внутри пор источника могут возникать диссипативные структуры.
Рис. 13. Термофорез позволяет добиться очень высоких концентраций органики.
А. Щелочной гидротермальный источник из Затерянного города (в разрезе). Заметна пористая структура стенок: здесь нет центрального жерла, вместо него – лабиринт пор (от микрометров до миллиметров в диаметре).
Б. Органические вещества, например нуклеотиды, теоретически могут достигать концентраций, более чем в 1 тыс. раз превышающих первоначальные, путем термофореза за счет конвекционных токов и тепловой диффузии в порах источника.
Г. Пример экспериментального термофореза, осуществленного в нашем реакторе в Университетском колледже Лондона. Здесь показан флуоресцентный органический краситель (флуоресцеин) в пятитысячекратной концентрации на пористой керамической пене (диаметр 9 см).
Д. Другое флуоресцентное вещество, хинин, концентрируется еще сильнее, минимум в миллион раз.
Возможно, это звучит слишком хорошо, чтобы быть правдой. Вблизи щелочных гидротермальных источников Затерянного города цветет жизнь, пусть и представленная в основном бактериями и археями. В этих источниках в небольших количествах образуется органика: метан и следы других углеводородов. Но новых форм жизни там определенно не возникает, и даже среды, богатой органикой, в результате термофореза не образуется. Конечно, уже живущие там бактерии подчищают ресурсы, но есть и более фундаментальные причины.
“Черные курильщики” 4 млрд лет назад отличались от сегодняшних. И химия щелочных гидротермальных источников в то время была иной. Конечно, в чем-то они очень похожи. Сам процесс серпентинизации не должен был измениться: теплые, насыщенные водородом щелочные потоки, по всей видимости, растекались по морскому дну и тогда. Но химия океана была совсем другой, а это должно было сказаться на минеральном составе щелочных источников. Сейчас “курильщики” Затерянного города сложены в основном из карбонатов (арагонита), а другие похожие источники, открытые позднее (например Стритан в Исландии), состоят из глин. Что творилось в катархейских океанах 4 млрд лет назад, мы не можем точно сказать. Неизвестно, какие именно структуры должны были тогда формироваться, но ясно, что двумя ключевыми факторами, определяющими их тип, являлось отсутствие кислорода и гораздо более высокая, чем сейчас, концентрация CO2 в воздухе и океане. Из-за этих отличий древние щелочные источники в роли потоковых реакторов должны были быть гораздо эффективнее.
В отсутствие кислорода железо переходит в раствор в виде двухвалентного иона. Мы знаем, что в древних океанах было много ионов железа: они выпали в осадок, образовав огромные слоистые железные формации (гл. 1). Большая часть этих растворенных ионов попала в воду из “черных курильщиков”. Также мы знаем, что железо должно было осаждаться, формируя щелочные гидротермальные источники – не потому, что мы это наблюдали, а потому, что это должно быть обусловлено химическими закономерностями (и мы можем воссоздать этот процесс в лабораторных условиях). Железо будет выпадать в осадок в виде гидроксидов и сульфидов, которые образуют каталитические кластеры. Такие кластеры входят в состав ферментов, контролирующих метаболизм углерода и энергии (например в составе белка ферредоксина). Когда кислорода не было, минеральные стенки щелочных источников должны были содержать каталитически активные железные минералы – скорее всего с примесями других активных металлов, например никеля и молибдена (который растворяется в щелочных жидкостях). А это очень похоже на настоящий потоковый реактор: насыщенные водородом жидкости циркулируют в лабиринте микроскопических пор, стенки которых каталитически активны и где удерживаются и концентрируются продукты, а отходы – удаляются.
Но что именно вступает в реакцию? Вот мы и подобрались к сути: роли высоких концентраций CO2. В щелочных гидротермальных источниках в наше время углерода относительно мало, потому что большая часть доступного неорганического углерода осаждается на стенах источника в виде карбоната (арагонита). По всей видимости, в катархее, 4 млрд лет назад, концентрация CO2 была существенно выше (в 100–1000 раз), чем сейчас. Высокие концентрации CO2 не только обеспечивали источники углеродом, но и делали воду океанов кислее, что препятствовало осаждению карбоната кальция. (В наши дни возрастающая концентрация CO2 – и, как следствие, закисление океанов – представляет угрозу для коралловых рифов.) Уровень pH современных океанов – около 8, это слабощелочная среда. В катархее же океаны, скорее всего, были нейтральными или слабокислыми, с pH = 5–7 (геохимические данные не дают точные значения). Благодаря сочетанию высокой концентрации CO2, слабокислых вод океанов, щелочных потоков и тонких стенок, содержащих FeS, стали возможными химические процессы, которые в иных условиях было непросто осуществить.