Максвелловская научная революция - Ринат Нугаев
Шрифт:
Интервал:
Закладка:
Фундаментом максвелловых полевых уравнений является на этот раз лагранжева механика вместе с «экспериментальными фактами трех типов» (индукция токов, распределение магнитной интенсивности в соответствии с изменениями потенциала и индукция статического электричества).
«Несмотря на то, что Максвелл провозгласил в качестве основного метода получения своих уравнений дедукцию их из экспериментальных фактов, его вывод все еще требовал постулирования тока смещения, что не могло быть ни подтверждено экспериментами, ни выведено из них» (Моррисон, 2000, p. 85).
Общие уравнения в дальнейшем применяются к случаю магнитного возмущения, и демонстрируется, что единственные возмущения, которые могут распространяться таким образом, – это возмущения, поперечные к направлению распространения. Максвелл специально отмечает, что концепция распространения поперечных магнитных возмущений с исключением продольных разрабатывалась Фарадеем в его «Мыслях о лучевых вибрациях» (Phil.Mag., май 1846).
«Эта теория света в том виде, в каком она предложена им, является такой же по существу, как и та, которую я развиваю в настоящем докладе, за исключением того, что в 1846 г. не имелось данных для расчета скорости распространения» (Максвелл, [1864], С. 263).
Трудно переоценить это максвелловское замечание. Последний здесь ясно указывает на источник своей идеи о том, что свет – это электромагнитные колебания. Это – фарадеевская работа 1846 г. (и, возможно, личные контакты с Фарадеем, имевшие место в 1861). Максвелл добавил к ней свою собственную гипотезу о том, что скорость распространения электромагнитных колебаний равна скорости света – самое простое из возможных соотношений между скоростью света и скоростью электромагнитных возмущений.
Важно также то, что и в [III] Максвелл вынужден еще и еще раз обратиться к принципиальному моменту, относящемуся к постоянно используемым механическим аналогиям.
«Я имел уже прежде случай ([II]) описать особый вид движения и особый вид напряжения, приспособленных для объяснения этих явлений. В настоящем докладе я избегаю какой-либо гипотезы такого рода и, пользуясь такими словами, как электромагнитное количество движения и электрическая упругость в отношении известных явлений индукции токов и поляризации диэлектриков, я хочу только направить мысли читателя на механические явления, которые могут помочь ему понять электрические явления. Все подобные выражения в настоящей статье должны рассматриваться как иллюстративные, а не как объясняющие…. Однако, говоря об энергии поля, я хочу быть понятым буквально. Всякая энергия есть то же, что механическая энергия, существует ли она в форме обычного движения или в форме упругости, или в какой-нибудь другой форме. Энергия в электромагнитных явлениях – это механическая энергия. Единственный вопрос заключается в том, где она находится?
Согласно старым теориям, она находится в наэлектризованных телах, проводящих цепях и магнитах в форме неизвестного качества, называемого потенциальной энергией или способностью производить определенные действия на расстоянии.
По нашей теории она находится в электромагнитном поле, в пространстве, окружающем наэлектризованные и намагниченные тела, а также в самих этих телах и проявляется в двух различных формах, которые могут быть описаны без гипотез как магнитная поляризация и электрическая поляризация, или согласно весьма вероятной гипотезе как движение и напряжение одной и той же среды» (Максвелл, [1864], С. 73—74).
Важно то, что здесь Максвелл уже по-другому оценивает соотношения между своей собственной исследовательской программой, и программой Ампера-Вебера. Теперь, в отличие от [II], он усматривает достоинство своей программы не в том, что она дает описание механизма генерации электромагнитного излучения, а в том, что предлагаемый им подход имеет более общий характер, описывая энергию не только в самих телах, но и пространстве, которое их окружает.
Но особое значение представляет, конечно, VI часть работы [III], озаглавленная «Электромагнитная теория света», где Максвелл не только получает свои уравнения без явного использования тока смещения, но и приходит еще раз к выводу о том, что скорость электромагнитных возмущений в точности равна скорости света, без каких-либо модельных представлений и «разумных физических допущений».
«В начале этого доклада мы пользовались оптической гипотезой упругой среды, через которую распространяются колебания света, чтобы показать, что мы имеем серьезные основания искать в этой же среде причину других явлений в той же мере, как и причину световых явлений. Мы рассматриваем электромагнитные явления, пытаясь их объяснить свойствами поля, окружающего наэлектризованные или намагниченные тела. Таким путем мы пришли к определенным уравнениям, выражающим определенные свойства электромагнитного поля. Мы исследуем теперь, являются ли свойства того, что составляет электромагнитное поле, выведенные только из электромагнитных явлений, достаточными для объяснения распространения света через ту же самую субстанцию (Максвелл, [III], С. 317).
Волна магнитных возмущений распространяется в любом направлении со скоростью V, причем направление намагничения находится в плоскости волны. Никакое магнитное возмущение, направление намагничения которого не находится в плоскости волны, вообще не может распространяться как плоская волна. Отсюда магнитные возмущения, распространяющиеся через электромагнитное поле, сходятся со светом в том отношении, что возмущения в любой точке поперечны к направлению распространения, и также волны могут обладать всеми свойствами поляризованного света.
«Совпадение результатов, по видимому, показывает, что свет и магнетизм являются проявлениями свойств одной и той же субстанции, и что свет является электромагнитным возмущением, распространяющимся через поле в соответствии с законами электромагнетизма» (Максвелл, [1864], С. 320).
В конце концов, чтобы еще раз в этом убедиться, Максвелл проверяет, «может ли распространяться через эту среду и другой вид возмущений», и еще раз убеждается, что – нет. В итоге он может, наконец, резюмировать полученные в [III] результаты следующим образом (письмо С. Хокину от 7 сентября 1864): «Я также очистил электромагнитную теорию света от всех неоправданных предположений, так что мы можем теперь определить скорость света за счет измерения притяжения тел, которые содержатся при заданной разнице потенциала, значение которого дано в электромагнитных единицах» (цит. по: Campbell & Garnett, 1882, p. 168).
И, наконец, творчество Максвелла завершает объемный «Трактат об электричестве и магнетизме» (IV), задуманный автором как своеобразная энциклопедия явлений электричества и магнетизма. Вполне в духе второй половины XIX в., наследник традиций не только кантовской эпистемологии, но и контовского позитивизма ставит в качестве своей основной цели, относящейся к явлениям электричества и магнетизма, «описать наиболее важные из этих явлений, показать, как их можно измерить, и проследить математические соотношения между измеряемыми величинами… С математической точки зрения наиболее важной стороной всякого явления является наличие некоторой измеряемой величины. Поэтому я буду рассматривать электрические явления в основном в отношении их измерения» (Максвелл, [1873], 1952, С. 345, С. 346).