Наука, не-наука и все-все-все - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
В поисках примеров я прочитал «Историю свечи» Фарадея – курс из шести лекций для детей. Идея у всех у них общая: на что бы вы ни смотрели, если вы смотрите достаточно пристально, вы увидите целую вселенную. Так он и поступил – рассмотрел все, связанное со свечой: процесс горения, ее состав и т. д. А в предисловии, где описывалась биография автора и некоторые из его открытий, говорилось: «Фарадей выяснил, что электрический заряд, необходимый для электролиза, прямо пропорционален массе осаждаемого вещества». Далее сообщалось, что обнаруженные им закономерности сегодня применяются в процессе хромирования, а также анодирования алюминия и множестве других промышленных процессов. Мне такое заявление не нравится. Вот что сказал об одном из своих открытий сам Фарадей: «Атомы вещества, так или иначе, обладают электрическими силами или же как-то с ними связаны, чем и объясняются их свойства, в том числе и мера химического сродства».
То есть он обнаружил, что фактор, определяющий, как соединяются атомы, определяющий сочетание атомов железа и кислорода, образующих окись железа, вот каков: некоторые атомы электрически положительны, а другие – электрически отрицательны, и они притягиваются в определенных соотношениях. Он обнаружил, что явление электричества связано с атомами. Это важное открытие, но важнее другое: то был один из самых замечательных моментов в истории науки, один из тех редких моментов, когда пересеклись две ее огромные области. Фарадей неожиданно открыл, что два совершенно разных явления, оказывается, суть две стороны одного.
Электричество уже изучалось, изучалась и химия, – и вдруг выясняется, что это две стороны одного и того же явления: химических процессов в результате действия электрических сил. И потому просто сказать, что до сих пор те же принципы применяются в хромировании, – непозволительно.
А газеты, как вы знаете, готовы любое открытие в области физиологии описать одной строкой: «ученый считает, что открытие может применяться для лечения рака». Но о ценности открытия как такового они ничего не могут сказать.
Попытки понять, как устроен мир, представляют собой самую суровую проверку умственных способностей человека. Она подразумевает и некоторое трюкачество, хождение по канату логики – нужно пройти и не сделать ошибки в предсказании того, что будет. Примеры тому – квантовая механика и релятивистские теории.
Третий аспект предмета моей лекции – наука как метод познания. Этот метод основан на принципе, что судить о существовании чего-либо можно только на основе наблюдения, исследования.
Все аспекты и характеристики науки становятся ясны, если мы понимаем, что последний и окончательный судья истинности идеи – исследование. Однако «доказать» в данном случае означает «проверить» – так же как стопроцентно надежный тест на алкоголь проверяет наличие алкоголя. Это можно сформулировать следующим образом: «исключение проверяет правило». Или скажем иначе: «исключение доказывает, что правило неверно». Таков принцип науки. Если в правиле есть исключение, и его можно подтвердить с помощью исследования, то правило неверно.
Исключения из любого правила в высшей степени интересны сами по себе, так как они показывают неверность правила. И очень увлекательно выяснять, каково же верное правило, если таковое имеется. Исключение изучается наряду с другими обстоятельствами, дающими похожие результаты. Ученый старается найти и другие исключения и определить их особенности – и процесс этот всегда интересен и удивителен. Ученый не желает скрыть, что правило неверно, вся увлекательность как раз заключается в противоположном. Он старается доказать свою ошибку – и как можно быстрее.
Принцип «все решает исследование» жестко ограничивает круг вопросов, на которые можно ответить. Они сводятся примерно к такому: «Что будет, если я сделаю то-то?» Можно попробовать – и узнать. А вопросы типа «Делать ли это?» и «Нужно ли это?» – уже совсем другое.
Но если предмет изучения не лежит в области науки, если его нельзя проверить исследованием, это не значит, что его не существует или что вопрос глупый или неверный. Мы же не стараемся доказать, что наука хороша, а все прочее не хорошо. Ученые берут то, что можно проверить исследованием, и таким образом находят то, что называется наукой. Однако остаются и другие вещи, для которых научный метод не годится. Это не означает, что они не важны. Они на самом деле по-своему самые важные. Когда вам требуется составить мнение, как действовать, всегда присутствует «нужно», а это не выведешь только из вопроса «что произойдет, если я сделаю то-то?». Вы скажете: мы же знаем, что произойдет, и решим, нужно оно или нет. Но так ученый поступать не должен. Вы можете вычислить, что произойдет, и лишь потом вам придется решить, нравится вам это или нет.
Принцип «главный аргумент – исследование» приводит нас к некоторым следствиям в техническом плане. Например, исследование не может быть приблизительным. Требуется большая точность. Быть может, в аппарат попала соринка и из-за этого изменился цвет – он не тот, как вы предполагали. Нужно проверять результат очень внимательно, а потом перепроверять, чтобы убедиться в соблюдении всех условий и в правильном истолковании результата.
Интересно, что эту методичность, которая есть благо, нередко понимают превратно. Когда кто-то говорит, что дело делается «по-научному», он часто подразумевает, что оно делается методично. Я слышал, как люди говорили о «научном» истреблении евреев в Германии. Ничего «научного» в этом истреблении не было, была лишь методичность. Вопрос об исследованиях и проверке результатов там и не поднимался. В Древнем Риме людей истребляли в каком-то смысле тоже «по-научному», да и в другие времена, когда наука была развита куда меньше, чем теперь, и исследованиям уделяли не слишком много внимания. В подобных случаях следует говорить не «научно», а «методично» или «систематически».
Существует ряд особых приемов, связанных с исследовательскими процессами, и многое из того, что называют философией науки, касается обсуждения этих приемов.
Пример тому – интерпретация результатов. Возьмем простой случай – известную шутку о человеке, который жалуется другу на таинственное явление: на ферме у него белые лошади съедают больше, чем черные. Он обеспокоен и не понимает, отчего так, а его друг высказывает предположение: просто белых лошадей больше, чем черных.
Звучит забавно, но подумайте, сколько подобных ошибок делается в разного рода суждениях и как часто встречаются случаи, когда просто белых лошадей больше. Научные рассуждения требуют определенной дисциплины ума, и мы должны придерживаться этой дисциплины, потому что подобные ошибки не нужны сегодня даже на самом низком уровне.
Другая важная характеристика науки – объективность. На результаты исследования нужно смотреть объективно, потому что самому экспериментатору один результат может нравиться больше, чем другой.
Вы проводите эксперимент несколько раз, и из-за каких-нибудь погрешностей вроде попавшей соринки результаты иногда получаются разные. Вам же не все подвластно. Вам хочется получить определенный результат, и когда он достигнут, вы говорите: «Ага, выходит именно так!» В следующий раз результат получается другой. А может, в первый раз попала соринка, а вы не заметили.