Здоровье по Дарвину. Почему мы болеем и как это связано с эволюцией - Джереми Тейлор
Шрифт:
Интервал:
Закладка:
С регуляторными Т-лифмоцитами мы уже встречались в предыдущей главе, где говорили о «старых друзьях» и о том, как эти лимфоциты защищают нас от аллергических и аутоиммунных реакций посредством ингибирования перепроизводства эффекторных Т-лифмоцитов. Они также играют важнейшую роль в обеспечении иммунной толерантности к плоду. Раньше эти клетки называли супрессорами, поскольку первые эксперименты с пересадкой тканей показали, что они могут предотвращать отторжение, однако они впали в немилость из-за того, что их предполагаемые побочные эффекты преувеличивались, а возможности их количественного анализа имели серьезные технические ограничения. Открытие в Т-клетках важного гена-маркера, транскрипционного фактора FOXP3, заставило исследователей вновь обратить на них внимание. Было установлено, что мыши и люди, у которых отсутствует фактор FOXP3, не имеют регуляторных Т-клеток и подвержены различным аутоиммунным заболеваниям.
Непосредственно перед овуляцией происходит значительное увеличение популяции регуляторных Т-клеток в периферической крови. Предположительно это вызывается повышением уровней эстрогена и прогестерона и помогает объяснить, почему беременные женщины с таким аутоиммунным заболеванием, как ревматоидный артрит, часто испытывают ремиссию во время беременности. Группа исследователей под руководством Тамары Тилберг из Гарвардского университета показала, что Т-клетки могут распознавать специфические варианты человеческих лейкоцитарных антигенов – молекулы HLA-C, единственные из этой группы антигенов, которые являются полиморфными в том плане, что могут существовать в 1600 потенциальных версиях. Это один из примеров механизма гистосовместимости, о котором мы говорили выше. Данные варианты HLA-C присутствуют в эмбриональной и фетальной ткани, и способность распознавать их позволяет Т-клеткам запускать либо враждебную, либо благоприятную реакцию в зависимости от того, что они узнают о совместимости с отцовскими генами. При несовместимости HLA-C, когда отцовские антигены HLA-C значительно отличаются от материнских антигенов HLA-C, начинают увеличиваться популяции продуцирующих цитокин Т-клеток и регуляторных Т-клеток. Именно присутствие регуляторных клеток сдерживает потенциально враждебную реакцию со стороны эффекторных Т-клеток, а ряд исследований также показал, что недостаточная популяция регуляторных Т-клеток связана как с привычным невынашиванием беременности, так и с преэклампсией.
Роберт Самстейн из Онкологического центра Слоун-Кеттеринг в Нью-Йорке помог нам взглянуть на вклад регуляторных Т-клеток в обеспечение иммунной толерантности к плоду под совершенно новым, эволюционным углом зрения. Бóльшая часть регуляторных Т-клеток производится в вилочковой железе, или тимусе, отсюда и буква Т в их названии. Однако было обнаружено, что отдельная популяция регуляторных Т-клеток может продуцироваться из наивных Т-клеток в периферической кровеносной системе. Именно эта популяция Т-регуляторов участвует в обеспечении иммунной толерантности к плоду, и Самстейн считает, что она появилась в ходе эволюции специально для того, чтобы смягчать конфликт между матерью и плодом, который неизбежно возникает у плацентарных млекопитающих вследствие более тесного контакта между отцовскими антигенами и материнским организмом. Самстейн показал, что дифференцирование этих периферийных регуляторных Т-клеток требует наличия гена FOXP3 в паре с некодирующим генетическим элементом CNS1, который усиливает его действие. В то же время CNS1 не требуется для созревания тимусных Т-регуляторов. Самстейн изучил наличие генетического элемента CNS1 у широкого спектра видов животных и обнаружил, что он неожиданно появляется только у плацентарных млекопитающих. Оказалось, что CNS1 относится к разряду «прыгающих генов» (ученые называют их транспозонами), которые были впервые исследованы Барбарой Макклинток в 1950-х годах. Судя по всему, элемент CNS1 появился в какой-то части генома и затем «перепрыгнул» на другую хромосому, где приземлился чуть ниже гена FOXP3 таким образом, что в ходе совместной эволюции стал усиливать экспрессию этого гена. Самстейн сообщил о серии экспериментов на самках мышей, которые показали, что CNS1-дефицитные мыши продуцировали гораздо меньше регуляторных Т-клеток в децидуальной оболочке. У CNS1-дефицитных самок, даже когда они спаривались с самцами с несовпадающим ГКГС (главным комплексом гистосовместимости), наблюдался ранний некроз спиральных артерий, воспаление и отек – и резорбция плода.
Эта новая, эволюционная модель специализированных регуляторных Т-клеток, отвечающих за иммунную толерантность к плоду, представляется весьма убедительной, поскольку позволяет объяснить упомянутый выше факт – женщины, которые быстро беременеют от нового партнера, более склонны к преэклампсии. Причина может быть в том, что они попросту не успевают приобрести толерантность к специфическому типу молекул HLA-C, которые предварительно презентуются им в сперме партнера. Эта модель также объясняет, почему риск преэклампсии возрастает при длительном интервале между беременностями от одного и того же партнера – причина может быть в ослаблении иммунной памяти. Наконец, эта модель помогает объяснить значение очень высоких уровней цитокина, известного как трансформирующий фактор роста бета (TGF-β), в человеческой сперме, о чем сообщила Сара Робертсон и ее коллеги. TGF-β необходим для дифференциации специализированных регуляторных Т-клеток, которые в конечном итоге мобилизуются в матке. Если бы во время развития плаценты в стенке матки не собиралась армия таких Т-регуляторов, ничто бы не мешало материнскому организму начать атаку на чужеродный вторгающийся плод.
Когда плод начинает развиваться, перетягивание каната между матерью и плодом начинает идти в полную силу, поскольку, по словам Дэвида Хейга, теперь в интересах матери сдержать необузданный рост и прожорливость плода, а в интересах плода – получить от матери как можно больше питательных веществ. Поскольку плод несет две копии (аллели) всех генов, одна из которых достается ему от матери, а другая от отца, его ДНК содержит представителей геномов обоих родителей. Эволюция нашла решение этому материнско-отцовскому конфликту у млекопитающих в форме механизма геномного импринтинга, который состоит в подавлении экспрессии материнских или отцовских аллелей определенных генов посредством метилирования ДНК – попросту говоря, к этим аллелям присоединяются так называемые метильные группы и «выключают» их. Когда импринтируется материнский аллель гена, у плода экспрессируется отцовский аллель, и наоборот, когда импринтируется отцовский аллель, активным становится материнский. На настоящий момент у млекопитающих обнаружено примерно 150 генов, подверженных импринтингу (и, вероятно, в скором времени будет открыто множество других), и многие из этих генов связаны с плацентой и плодом. Как вы могли догадаться, эти гены, как правило, обладают взаимно противоположным действием – в полном соответствии с теорией перетягивания каната, выдвинутой Хейгом. Исследователи провели ряд экспериментов, в ходе которых они выключали либо материнский, либо отцовский аллель в импринтируемых генах, чтобы увидеть, что происходит, когда нарушается обеспечиваемая импринтингом симметричность. Другими словами, они намеренно вмешались в процесс перетягивания каната, чтобы узнать, что произойдет, если одна из сторон перестанет тянуть канат.
Например, одна из пар генов, которая импринтируется на очень раннем этапе, – ген, кодирующий синтез инсулиноподобного фактора роста 2 (IGF2). Этот белковый гормон способствует росту плода, поэтому в норме импринтингу подвергается материнский аллель, а отцовский остается активным. Когда исследователи отключили у мышей отцовскую копию гена, отвечающего за синтез IGF-2, тем самым они склонили баланс сил в пользу матери, в результате чего родившиеся детеныши весили на 40 процентов меньше, чем обычно. В нормальной ситуации материнский организм уравновешивает воздействие IGF2 при помощи гена с противоположным действием – IGF2R, который кодирует соответствующие рецепторы (понятно, что отцовский аллель этого гена предусмотрительно отключается). Когда же исследователи заблокировали материнский аллель этого гена, баланс сил сместился в пользу отца, что привело к увеличению выработки плацентарных гормонов на 35 процентов и, как следствие, к рождению более крупных детенышей, которые весили на 25 процентов больше нормы.