Книги онлайн и без регистрации » Разная литература » Симфония № 6. Углерод и эволюция почти всего - Роберт Хейзен
[not-smartphone]

Симфония № 6. Углерод и эволюция почти всего - Роберт Хейзен

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 17 18 19 20 21 22 23 24 25 ... 85
Перейти на страницу:
рассыпятся в порошок. Необходимо использовать модель DAC гораздо более высокого уровня, иначе неправильно расположенные алмазы треснут и расколются при таких высоких давлениях. Традиционные рентгеновские лучи также не подходят — они слишком слабые, чтобы можно было получить измеримые рисунки кристалла, который меньше пылинки. Так что ученые вынуждены использовать гигантские, финансируемые государством синхротроны — ускорители частиц, в которых рентгеновские лучи в миллион раз сильнее, чем в традиционных источниках. Но они заняты 24 часа в сутки 7 дней в неделю. Мало кому из ученых удалось преодолеть те строгие ограничения, которые обеспечивают единственно возможный экспериментальный путь к пониманию самых глубинных углеродсодержащих кристаллов Земли. Среди них своими открытиями в науке о глубинном углероде выделяется итальянский минералог и кристаллограф Марко Мерлини из Миланского университета{56}.

Марко Мерлини — скромный ученый, которому гораздо важнее трепет открытия, нежели признание. Он приветливо улыбается, встречая вас, его глаза горят азартом, ученый жаждет показать свою лабораторию и последние результаты. И эти результаты впечатляют. В статье 2012 г., опубликованной в журнале Proceedings of the National Academy of Sciences, Мерлини с коллегами сообщил о структурах высокого давления доломита — похожего по структуре на кальцит распространенного карбонатного минерала земной коры с равным соотношением кальция и магния{57}.

Если карбонатные минералы существуют в мантии Земли, то доломит — хороший на то кандидат. Работая в Европейском центре синхротронного излучения во французском Гренобле, ученые из группы Мерлини сжали крошечный кристалл доломита до небывалых значений. При давлении свыше 170 000 атм исследователи увидели структуру, которую они назвали «доломит-II» — по аналогии с кальцитом-II Меррилла и Бассета. Но стоило им сжать кристалл до 350 000 атм, как появилась совершенно новая структура — с четырьмя атомами кислорода вокруг нескольких атомов углерода, однако в новой, уплощенной пирамиде. Исследователи назвали ее конфигурацией «3 + 1». Мерлини и его команда продолжили подвергать свой кристалл доломита давлениям до 600 000 атм, но не увидели ни единого признака преобразования его в предполагаемый карбонат с углеродом, окруженным тетраэдром атомов кислорода.

Прорыв произошел в 2015 г., когда группа Мерлини опубликовала описание необыкновенной новой формы карбоната высокого давления, содержащего равные части магния и железа{58}. Эти измерения казались почти невозможными, ведь требовались давления, приближающиеся к 1 млн атм, что соответствует условиям в глубочайших глубинах мантии Земли — более 1000 км под нашими ногами. Исследованием было подтверждено спрогнозированное преобразование плоских карбонатных групп CO3 в пирамиды CO4. Однако вместо ожидаемой структуры пироксена с непрерывными цепочками тетраэдров, соединенных углами, ученые обнаружили совершенно новый и неожиданный атомный порядок. У их карбоната под ультравысоким давлением цепочки разбились на сегменты по четыре тетраэдра, разделенные короткими, заполненными железом разрывами, — получилась причудливая плотная структура, не похожая ни на что, виденное ранее.

У открытий Мерлини — далеко идущие последствия. Десятилетия назад общепринятая точка зрения заключалась в том, что при высоком давлении минералы имеют тенденцию образовывать простые структуры — результат необходимой на больших глубинах плотной правильной упаковки атомов. Продолжающиеся же исследования Мерлини и других пионеров минералогии ультравысокого давления показывают иную картину. Структуры высокого давления могут быть сложными, непривычными и зачастую неожиданными. И это хорошие новости для тех из нас, кто увлечен изучением удивительной сложности природы.

Глубинные алмазы{59}

Среди всего разнообразия форм углеродсодержащих минералов высокого давления — с учетом как уже известных кристаллических структур, так и тех, которые еще предстоит обнаружить, — алмаз всегда будет занимать свое почетное место. Он находится в идеальной нише между очень редкими и просто редкими минералами: достаточно распространен для того, чтобы его мог купить любой желающий, но достаточно редок, чтобы заслуживающие внимания крупные камни стоили миллионы долларов. Уже добыты сотни миллионов драгоценных камней с теми размерами, что подходят для колец или ожерелий, но обладать одним или несколькими такими камнями хотят еще сотни миллионов потребителей. Привлекательность алмазов обусловлена и их научной ценностью: чем больше мы изучаем эти почти чистые фрагменты углерода из глубин Земли, тем больше узнаем об истории и динамике нашей планеты. Поэтому неудивительно, что никакой другой минеральный вид не завораживал ученых из Обсерватории глубинного углерода до такой степени.

Первые кристаллы алмаза (хотя и микроскопического размера) в истории Вселенной образовались при конденсации атомов углерода из горячего газа в оболочках химически активных звезд. Но наши самые ценные алмазы образуются не в ходе этого энергетического процесса, протекающего в практически вакуумных условиях Космоса. Если речь идет о драгоценных камнях, мы должны отвести взгляд с окраин звезд и посмотреть в глубокие недра планет, подобных Земле.

В земной коре образуется очень много графита. Когда атомы углерода концентрируются вблизи поверхности планеты, появляется именно графит, а не алмаз. Для создания крупного кристалла плотного твердого алмаза Земле требуется значительное давление, — по крайней мере в десятки тысяч раз больше атмосферного, — чтобы упаковать атомы углерода поплотнее. Не помешает также применить жар паяльной лампы, чтобы «уговорить» колеблющиеся атомы углерода перейти в новую, более стабильную конфигурацию пирамиды. Так что мы должны сместить фокус внимания в глубокие недра, на сотни или более километров вниз, в недостижимую мантию Земли. Где химические условия подходящие, а давление и температура достаточно высокие, где множество атомов углерода концентрируются вокруг центра кристаллизации, вот там и могут вырасти крупные драгоценные камни.

Человечество научилось воссоздавать условия, существующие на глубине сотен километров под нашими ногами, сконструировав гигантские гидравлические прессы с прочными карбидными наковальнями и мощными электрическими нагревателями. Миллионы карат синтетических камней производятся таким образом каждый год: или для абразивов, или для электронных компонентов, или для оптических окон — или как синтетические драгоценные камни. Можно даже заказать «алмаз памяти» в виде кулона — он образуется под давлением из атомов углерода, оставшихся после кремации любимого человека. Люди не вечны, но памятный алмаз переживет даже самую долгую память.

Самые крупные алмазы — не такие, как все{60}

Теперь, когда мы знаем, что алмазы могут раскрывать укрытые долгое время тайны сложных недр и бурного прошлого нашей планеты, у развивающегося научного сообщества появляется больше оснований, чтобы оценивать эти камни дороже других сокровищ. Охотники за алмазами, представляющие эту новую генерацию, не гоняются за безупречными камнями для дорогих помолвочных колец или теннисных браслетов. Наоборот, превыше всего они ценят изъяны в виде крошечных минеральных включений — некрасивые черные, красные, зеленые и коричневые вкрапления минералов, а также микроскопические карманы с глубинными жидкостью и газом.

1 ... 17 18 19 20 21 22 23 24 25 ... 85
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?