Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов
Шрифт:
Интервал:
Закладка:
Предположим, к примеру, что полоску из цинка наполовину опустили в раствор сульфата цинка. Известно, что цинк вступает в реакцию с раствором. Каждый атом цинка, переходя в раствор, теряет по два электрона, следовательно, на стержне накапливается отрицательный заряд. Атомы цинка, потерявшие электроны, становятся положительно заряженными. Их положительный заряд по величине равен отрицательному заряду потерянных электронов. Заряженный атом называется ионом. Итак, мы имеем: положительно заряженные ионы цинка в растворе и атомы цинка на полоске, накапливающие отрицательный заряд.
Теперь представим полоску меди, опущенную в раствор сульфата меди. В растворе уже имеются положительные ионы меди, поэтому новые ионы образовываться не будут, наоборот, ионы меди станут возвращаться к полоске вместе со своим положительным зарядом. Теперь представим, что сосуд с кислотой, в которую погружена цинковая пластина, и сосуд с сульфатом меди, в который погружена медная пластина, соединены пористым мостиком, так что жидкости могут постепенно проникать из одного сосуда в другой.
У нас есть цинковая полоска с небольшим отрицательным зарядом и медная полоска с небольшим положительным зарядом. Если две полоски соединить проводом, то избыточные электроны с цинковой пластины легко перейдут на медную, на которой недостаток электронов. Так как цинк потеряет свои избыточные электроны и, как следствие, его отрицательный заряд уменьшится, то новые атомы цинка начнут вступать в реакцию с раствором для создания новых избыточных электронов. На медной полоске, наоборот, из-за перебежавших к ней электронов положительный заряд уменьшится, а значит, все больше новых положительных ионов меди устремятся из раствора на полоску.
Итак, электроны по проводу перебегают от цинка к меди, а затем посредством раствора возвращаются к нему. Процесс будет длиться до тех пор, пока все атомы цинка не растворятся или пока все ионы меди не осядут (или пока не случится и то и другое вместе). В термопаре поток электронов поддерживался разницей температур; в вольтовом столбе — химической реакцией.
Хотя электроны перебегали по проводу от цинка к меди, ученые, основываясь на неправильном предположении Франклина (см. гл. 10), пришли к заключению, что ток движется в направлении от положительного полюса (медь) к отрицательному (цинк).
Поколением позже экспериментов Вольты Фарадей придумал термин для обозначения металлических стержней, которые опускались в растворы и служили полюсами. Он назвал их электродами (от греческого слова, означающего «направление электричества»). Положительный полюс получил название анод (верхний), отрицательный — катод (нижний), поскольку Фарадей представлял электричество в виде потока, стремящегося вниз.
Различные химические элементы, которые могут порождать постоянный электрический ток, называются гальваническими элементами, электрическими элементами или электрохимическими элементами. Все три названия могут употребляться. Часто, как и в начальных экспериментах Вольты, используются группы элементов. Такая группа одинаковых предметов называется «батареей», поэтому группы элементов, таких как вольтов столб, — это электрические батареи, или просто батареи. (В разговорной речи слово «батарея» может относиться и к одиночному элементу.)
Благодаря открытию Вольты появилась возможность изучать постоянные и продолжительные потоки электричества. Вначале было принято называть это явление «гальванизмом» или «гальваническим электричеством» в честь Гальвани. Однако разумнее называть его электродинамикой («электричеством в движении») в противоположность электростатике. Наука, изучающая химические реакции, которые создают электрический ток, называется, естественно, электрохимией.
Электрический ток начали использовать почти сразу же после его открытия. Поскольку поток электронов является результатом химических реакций, неудивительно, что электроны, движущиеся через смесь различных химических субстанций, могут порождать новую химическую реакцию, причем такую, которую сложно или невозможно получить иными методами.
В 1800 году, спустя всего шесть недель после первого доклада Вольты, два английских ученых, Уильям Николсон (1753–1815) и Энтони Карлейл (1768–1840), пропустили электрический ток через воду и обнаружили, что при этом она разлагается на водород и кислород. Такой процесс, при котором через растворы или расплавы проходит электрический ток, называется электролизом («расщепление электричеством»). В результате этого процесса молекулы распадаются на простые составляющие.
В 1807-м и 1808 годах английский химик Гемфри Дэви (1778–1829), используя батареи небывалой силы, смог разложить на жидкие составляющие некоторые очень активные металлы. Ему удалось отделить три металла и впервые искусственно создать такие металлы, как натрий, калий, кальций, стронций, барий и магний, — то, что не удавалось до использования электричества еще ни одному химику.
Его ассистент, Фарадей, продолжил изучение электролиза и показал, что количество вещества, выделяющееся при электролизе, прямо пропорционально электрическому заряду, который прошел через устройство. Его законы электролиза, которые будут детально рассмотрены в III части, способствовали формированию атомистического взгляда на материю, который предложил английский химик Джон Дальтон (1766–1844). В течение следующего столетия ученые, опираясь на эти законы, открыли электрон и установили внутреннее устройство атома.
Благодаря исследованиям Фарадея кулон можно более понятным образом определить не только через общее количество заряда или общее количество электричества (точную цифру которых иногда сложно установить), но и через количество тока, приводящее к химической реакции определенного объема (а это определяется очень просто). Например, заряд в один кулон, пропущенный через раствор серебра, приводит к выделению 1,18 мг металлического серебра.
Особенно интересует химиков выделение серебра массой 107,87 г — это то, что они называют «вес серебра в грамм-атомах». Следовательно, их интересует, сколько кулонов необходимо для получения 107,87 г серебра. Но это равняется 107,870 мг. Разделим это на 1,18 мг (количество серебра, которое выделяется при 1 кулоне). Получаем 95 500 — искомое число кулонов. Это число принимают за 1 фарад тока.
Один кулон электричества выделяет определенное количество серебра (или производит другую химическую реакцию определенного объема) независимо от скорости прохождения тока через раствор. Но вот скорость выделения серебра зависит от количества кулонов, которое проходит через раствор в единицу времени. Естественно поэтому говорить о мощности потока (или о силе тока) как о количестве кулонов в секунду. Один кулон в секунду равняется одному амперу, в честь Андре Мари Ампера (1775–1836), чья работа будет описана ниже. Итак, ампер — это единица силы тока.
И тогда, если ток, проходя через раствор, образует 1,18 мг металла каждую секунду, мы говорим, что через раствор проходит 1 ампер тока.
Сила тока между точками А и В зависит от разности потенциалов между ними. Если при разности потенциалов 20 вольт между этими точками возникает ток силой 1 ампер, то при разности потенциалов 40 вольт возникает ток силой 2 ампера, а при разности потенциалов 10 вольт — 0,5 ампера.