Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов
Шрифт:
Интервал:
Закладка:
Другая сторона первой пластины потеряет часть отрицательного заряда, и ее потенциал уменьшится. Таким образом, снова возникнет разность потенциалов между отрицательно заряженным стержнем и этой стороной. Электроны снова перейдут от стержня к пластине, и ее общий заряд станет значительно больше, чем тот, который мог возникнуть в отсутствие второй пластины.
Подобным же образом положительный заряд второй пластины может увеличиться благодаря первой отрицательно заряженной пластине. Так пластины обеспечивают друг другу большую зарядную емкость. (Подобное устройство может также называться конденсатором емкости.)
Чем больше заряд пластин, тем больше разность потенциалов между ними.
Это подобно утверждению: чем выше пик горы и чем ниже долина, тем дольше падать. Между количеством заряда и разностью потенциалов существует такая же прямая зависимость.
Представим, что между пластинами — вакуум, тогда отношение между величиной заряда и разностью потенциалов примет постоянную величину. Выразим это формулой:
q/v = c, (Уравнение 10.3)
где q — заряд в кулонах (Кл); v — разница потенциалов в вольтах (В); c — электрическая емкость, которая измеряется в кулонах на вольт.
Единица в один кулон на вольт получила название 1 фарад (в честь Майкла Фарадея)
Таким образом, конденсатор с электрической емкостью в один фарад накапливает заряд, равный одному кулону, на каждой из пластин: на одной — положительный заряд, на другой — отрицательный на один вольт потенциальной разницы между пластинами. Но на самом деле конденсаторы с такой большой электрической емкостью обычно не встречаются. Как правило, за единицу измерения принимают микрофарад (одна миллионная фарада) или микромикрофарад (одна миллионная миллионной фарада).
Теперь предположим, что между пластинами поместили диэлектрик (непроводник). Диэлектрик уменьшает силу притяжения между противоположными зарядами и, таким образом, сокращает количество работы, которая необходима для разделения этих зарядов. Но, как объяснялось выше, разность потенциалов есть количество работы, затраченной на разделение противоположных зарядов. Это значит, что разность потенциалов между пластинами конденсатора при наличии диэлектрика равняется отношению v/κ, где κ — диэлектрическая постоянная.
Если мы обозначим электрическую емкость конденсатора с диэлектриком как c', то тогда получим следующее:
c' = q/(v/κ) = κq/v = κ(q/v). (Уравнение 10.4)
А сопоставив уравнения 10.3 и 10.4, получим
c' = κc. (Уравнение 10.5)
Очевидно, что наличие диэлектрика между пластинами увеличивает электрическую емкость конденсатора прямо пропорционально его диэлектрической постоянной. Диэлектрическая постоянная воздуха равняется всего лишь 1,0006 (а за 1 принимается проницаемость вакуума), поэтому воздух между пластинами можно считать средой, равнозначной вакууму. Диэлектрическая постоянная стекла равна примерно 5, следовательно, электрическая емкость пластин, разделенных стеклом, увеличивается в пять раз. Соответственно, конденсатор, разделенный стеклом, накопит заряда в пять раз больше, чем тот, который имеет в качестве диэлектрика воздух.
Электрическую емкость можно увеличивать посредством уменьшения расстояния между пластинами, или посредством увеличения площади поверхности пластин, или применяя тот и другой способ одновременно. Если расстояние между пластинами сокращается, то уменьшается разность потенциалов (так же как и разность гравитационных потенциалов уменьшается, если объекты разделяют не два этажа, а один). Если это так, то v из уравнения 10.3 уменьшается, в то время как q остается неизменным, а с непременно возрастает. Опять же при увеличении площади поверхности пластин появляется больше места для скопления зарядов. Следовательно, q увеличивается в уравнении 10.3, а значит, и с тоже.
Конденсатор с большими пластинами может быть громоздким, но такого же результата можно добиться, объединив несколько конденсаторов между собой, соединив положительно заряженные пластины друг с другом при помощи проводникового материала, например металлического стержня, и так же поступив с отрицательно заряженными. Таким образом, любой заряд, добавленный к одной из пластин, распределится по всем пластинам того же типа, и множество маленьких пар пластин приобретут свойства одной большой пары. Таким образом сгруппированные конденсаторы называют последовательно соединенными.
В такой группе конденсаторов один набор пластин может быть неподвижным, а другой — поворотным. Вращая рукоятку, соединенную со стержнем, на который насаживаются пластины, можно передвигать отрицательно заряженные пластины вдоль линии положительно заряженных, и только те группы пластин, которые находятся прямо напротив друг друга, будут наиболее активными частями конденсатора. Следовательно, когда подвижная часть конденсатора двигается вдоль линии, электрическая емкость постоянно возрастает, если же она смещается, электрическая емкость уменьшается. Такой конденсатор называется регулируемым конденсатором.
Наэлектризованное тело можно разрядить, дотронувшись до него пальцем, если человек, касающийся этого предмета, стоит на поверхности без изоляции, особенно на земле, то есть если человек заземлен. Если предмет отрицательно заряжен, то поток электронов, устремившись из него, будет проходить через человека в землю, пока отрицательный заряд не рассеется. Если предмет положительно заряжен, то поток электронов, наоборот, устремится из земли через человека в этот предмет, пока положительный заряд не будет нейтрализован. В любом случае поток электронов проходит через тело человека.
Поскольку ощущения живого организма передаются посредством потока слабейших зарядов, движущихся по нервам, неудивительно, что можно ощутить поток электронов, появляющийся в результате разряжения заряженного предмета. Слабый заряд воспринимается как покалывание. Сильный — как внезапный тяжелый удар, который причиняет резкую боль. Такое явление называют электрическим шоком. (Подобно физическому удару, поток электронов тоже может убить.) Так как конденсаторы накапливают большое количество электрических зарядов, то шок, полученный от них, гораздо сильнее того, который можно получить от обычного наэлектризованного стержня тех же размеров.
Это неприятное свойство конденсаторов было обнаружено случайно в 1745 году, когда они только начали появляться. Самый первый конденсатор представлял собой стеклянный сосуд, покрытый изнутри и снаружи металлической фольгой. Сосуд закупоривали, а пробку протыкали металлическим стержнем. Металлическая цепь, подвешенная к стержню, касалась фольги внутри сосуда.
Предположим, что фольга снаружи сосуда заземлена. Если коснуться металлического стержня, торчащего из пробки, отрицательно заряженным стержнем, то электроны, пройдя через него, распределятся на внутреннем покрытии из фольги. Электроны на внутреннем покрытии оттолкнут электроны на внешнем покрытии и отправят их в землю. Если повторить это несколько раз, то на внутреннем покрытии накопится большой отрицательный заряд, а на внешнем — большой положительный. Благодаря тому что листы фольги оказались конденсатором, разделенным стеклом, величина получившегося заряда превзошла все ожидания первых экспериментаторов.