Жизнь на грани. Ваша первая книга о квантовой биологии - Джонджо МакФадден
Шрифт:
Интервал:
Закладка:
Приложимы ли эти принципы к живой материи? Вернемся к нашему воображаемому бильярдному столу, к самому началу партии, когда шары уложены аккуратным треугольником. На этот раз мы добавим к исходным много новых шаров (давайте представим, что перед нами очень большой стол) и сделаем так, чтобы они сильными ударами бились о пирамиду. И снова хаотичные столкновения шаров с разделительной планкой приведут ее в движение, но вместо того, чтобы использовать это движение для запуска паровозика вверх по холму, мы соорудим более сложное устройство. На этот раз наш механизм, приводимый в действие хаотичными столкновениями многочисленных шаров, совершит нечто необычное: среди хаоса движущихся шаров он будет сохранять первоначальные шары в упорядоченной форме. Каждый раз, когда один из шаров пирамиды выбивается со своего места ударом одного из хаотично движущихся шаров, некий удивительный датчик обнаруживает нарушение порядка. Этот датчик словно направляет незримую механическую руку заменить недостающий шар в пирамиде (например, в одной из ее вершин) на точно такой же из тех, что, сталкиваясь, катаются по столу.
Надеемся, этим примером нам удалось показать вам, что система использует некоторое количество энергии хаотичных столкновений молекул, чтобы поддерживать один из своих участков в упорядоченном состоянии. В термодинамике для описания мер неупорядоченности системы используется термин «энтропия». Соответственно, о высокоупорядоченном состоянии системы говорят как о состоянии с низкой энтропией. О системе нашего бильярдного стола можно сказать, что она пользуется энергией высокоэнтропийных (хаотичных) столкновений для поддержания одной из своих частей, пирамиды шаров, в упорядоченном состоянии с низкой энтропией.
Не думайте о том, каким образом можно соорудить подобную замысловатую конструкцию. Главное, что на нашем столе (в системе, в которой наблюдаются состояния с разной энтропией) происходит нечто весьма интересное. Имея в распоряжении лишь силу хаотично движущихся шаров, новая система, объединяющая шары, стол, планку, датчик, фиксирующий движение шаров, и незримую руку, перенаправляющую движение, способна поддерживать порядок в собственной подсистеме.
Давайте усложним задачу для нашего воображения и представим более сложную картину: на этот раз некоторое количество энергии движущейся планки (назовем ее свободной энергией[12] системы) будет использоваться для создания и поддержания работы сенсорного устройства и подвижной незримой руки. В первую очередь энергия будет направлена на то, чтобы использовать огромное количество бильярдных шаров в качестве строительного материала для построения подобных устройств. Теперь вся система становится самодостаточной и в принципе способна поддерживать сама себя до тех пор, пока в нее регулярно будут попадать новые хаотично движущиеся шары и для планки будет достаточно места, чтобы двигаться.
Наконец, будучи способной поддерживать себя в определенных состояниях, наша расширенная система совершит еще один удивительный подвиг. Она станет использовать доступную свободную энергию для обнаружения, захвата и упорядочения бильярдных шаров в целях создания собственной копии во всей полноте: стол, планка, сенсорное устройство, реагирующее на движение шаров, механическая рука и, разумеется, шары, уложенные треугольником. Подобные копии системы, в свою очередь, будут управлять собственными бильярдными шарами и свободной энергией их столкновений, производить новые самодостаточные механизмы, а эти новые копии…
Думаем, вы догадались, к чему это ведет. Наш воображаемый проект «Сделай сам» создал эквивалент жизни, движущей силой которой является энергия бильярдных шаров. Подобно птице, рыбе или человеку, наша выдуманная система способна поддерживать собственный внутренний порядок и воспроизводить саму себя, управляя свободной энергией хаотичных столкновений молекул. Несмотря на то что это многоэтапное и сложное задание, движущая сила, необходимая для его выполнения, похоже, ничем не отличается от силы, толкающей паровоз вверх по склону холма. В реальной жизни в роли воображаемых бильярдных шаров выступают молекулы, получаемые из пищевых продуктов. Хотя процесс, в который они вовлечены, намного сложнее процесса, описанного в нашем простом примере, принцип остается неизменным: свободная энергия хаотичных молекулярных столкновений (и химических реакций, в которых участвуют молекулы) направлена на поддержание жизнедеятельности организма и на создание копии этого организма.
Можно ли в таком случае считать жизнь разделом термодинамики? Неужели во время прогулки среди холмов мы взбираемся по склону благодаря тем же процессам, что приводят в движение паровые локомотивы? Неужели полет малиновки ничем не отличается от полета пушечного ядра? Если уж на то пошло, не является ли Божья искра жизни хаотичным движением молекул? Чтобы ответить на эти вопросы, нам следует внимательно присмотреться к тонкой организации живой материи.
Первые успешные и очень важные шаги на пути к пониманию тонкой организации живого были сделаны «философом-натуралистом» XVII века Робертом Гуком, который, заглянув в простейший микроскоп, разглядел в структуре среза пробкового дерева нечто, что он назвал клетками, и голландским натуралистом, основоположником микроскопии Антони ван Левенгуком, который с помощью микроскопа обнаружил в каплях озерной воды существ, которых он сам назвал микроскопическими организмами (мы объединяем этих существ общим названием «одноклеточная жизнь»). Он также наблюдал и описывал клетки растений, красные кровяные тельца — эритроциты и даже сперматозоиды. Позже всему научному миру стало ясно, что любая живая ткань имеет клеточную структуру, а клетки являются строительным материалом живых организмов. В 1858 году немецкий биолог и врач Рудольф Вирхов писал: «Подобно тому как дерево представляет известным образом расположенную массу, в каждой части которой, в листе, как и в корне, в стволе, как и в цветке, последними элементами являются ячейки, точно так же и в формах животного царства каждое животное является суммой жизненных единиц, каждая из которых обладает всеми характеристиками жизни».
Со временем ученые исследовали живые клетки с помощью все более мощных микроскопов. Оказалось, клетки имеют сложнейшую внутреннюю структуру. В центре каждой из них находится ядро, содержащее хромосомы. Ядро окружено цитоплазмой, в которой расположены специализированные структуры клетки — органеллы, выполняющие внутри клетки определенные функции по аналогии с внутренними органами тела. Например, органеллы митохондрии выполняют функцию внутриклеточного дыхания, а хлоропласты осуществляют фотосинтез внутри растительных клеток. В общем, клетка напоминает крошечный заводик, работающий на всех парах. Но что заставляет ее работать? Что оживляет клетку? Первоначально считалось, что клетки наполнены «жизненными силами», сходными по описанию с аристотелевскими представлениями о душе. Вера в витализм — наличие в живых организмах особой жизненной силы, отсутствующей в неживой материи, — господствовала среди ученых на протяжении почти всего XIX века. Для обозначения таинственной живой субстанции, наполняющей клетки, в то время был введен загадочный термин «протоплазма».