Гендерный мозг. Современная нейробиология развенчивает миф о женском мозге - Джина Риппон
Шрифт:
Интервал:
Закладка:
Глава 11
Наука и мозг
1. H. Ellis, Man and Woman: A Study of Human Secondary Sexual Characters (London, Walter Scott; New York, Scribner’s, 1894). • 2. N. M. Else-Quest, J. S. Hyde and M. C. Linn, ‘Cross-national Patterns of Gender Differences in Mathematics: A Meta-analysis’, Psychological Bulletin 136:1 (2010), p. 103. • 3. ‘Has an uncomfortable truth been suppressed?’, Gowers’s Weblog, 9 September 2018, https://gowers.wordpress.com/2018/09/09/has-anuncomfortable-truth-been-suppressed (accessed 8 November 2018). • 4. Там же. • 5. L. H. Summers, ‘Remarks at NBER Conference on Diversifying the Science & Engineering Workforce’, Office of the President, Harvard University, 14 January 2005, https://www.harvard.edu/president/speeches/summers_2005/nber.php (accessed 8 November 2018). • 6. ‘The Science of Gender and Science: Pinker vs. Spelke: A Debate’, Edge, https://www.edge.org/event/the-science-of-gender-and-science-pinker-vs-spelke-adebate (accessed 8 November 2018). • 7. Y. Xie and K. Shaumann, Women in Science: Career Processes and Outcomes (Cambridge, MA, Harvard University Press, 2003). • 8. Там же. • 9. D. F. Halpern, C. P. Benbow, D. C. Geary, R. C. Gur, J. S. Hyde and M. A. Gernsbacher, ‘The Science of Sex Differences in Science and Mathematics’, Psychological Science in the Public Interest 8:1 (2007), pp. 1–51. • 10. J. Damore, ‘Google’s Ideological Echo Chamber’, July 2017, available at https://www.documentcloud.org/documents/3914586-Googles-Ideological-Echo-Chamber.html (accessed 8 November 2018). • 11. D. P. Schmitt, A. Realo, M. Voracek and J. Allik, ‘Why Can’t a Man Be More Like a Woman? Sex Differences in Big Five Personality Traits across 55 Cultures’, Journal of Personality and Social Psychology 94:1 (2008), p. 168. • 12. M. Molteni and A. Rogers, ‘The actual science of James Damore’s Google memo’, Wired, 15 August 2017, https://www.wired.com/story/the-pernicious-science-of-james-damores-google-memo (accessed 8 November 2018); H. Devlin and A. Hern, ‘Why are there so few women in tech? The truth behind the Google memo’, Guardian, 8 August 2017, https://www.theguardian.com/lifeandstyle/2017/aug/08/why-are-there-so-fewwomen-in-tech-the-truth-behind-the-google-memo (accessed 8 November 2018); S. Stevens, ‘The Google memo: what does the research say about gender differences?’, Heterodox Academy, 10 August 2017, https://heterodoxacademy.org/the-google-memo-what-does-the-research-say-about-genderdifferences (accessed 8 November 2018). • 13. ‘The Google memo: four scientists respond’, Quillette, 7 August 2017, http://quillette.com/2017/08/07/google-memo-four-scientists-respond (accessed 8 November 2018). • 14. Там же. • 15. Там же. • 16. G. Rippon, ‘What neuroscience can tell us about the Google diversity memo’, Conversation, 14 August 2017, https://theconversation.com/what-neuroscience-can-tell-us-about-the-google-diversitymemo-82455 (accessed 8 November 2018). • 17. Devlin and Hern, ‘Why are there so few women in tech?’ • 18. R. C. Barnett and C. Rivers, ‘We’ve studied gender and STEM for 25 years. The science doesn’t support the Google memo’, Recode, 11 August 2017, https://www.recode.net/2017/8/11/16127992/google-engineer-memo-research-science-womenbiology-tech-james-damore (accessed 8 November 2018). • 19. M.-C. Lai, M. V. Lombardo, B. Chakrabarti, C. Ecker, S. A. Sadek, S. J. Wheelwright, D. G. Murphy, J. Suckling, E. T. Bullmore, S. Baron-Cohen and MRC AIMS Consortium, ‘Individual Differences in Brain Structure Underpin Empathizing – Systemizing Cognitive Styles in Male Adults’, NeuroImage 61:4 (2012), pp. 1347–54. • 20. S. Baron-Cohen, ‘Empathizing, Systemizing, and the Extreme Male Brain Theory of Autism’, Progress in Brain Research 186 (2010), pp. 167–75. • 21. J. Wai, D. Lubinski and C. P. Benbow, ‘Spatial Ability for STEM Domains: Aligning Over 50 Years of Cumulative Psychological Knowledge Solidifies Its Importance’, Journal of Educational Psychology 101:4 (2009), p. 817. • 22. Там же. • 23. M. Hines, B. A. Fane, V. L. Pasterski, G. A. Mathews, G. S. Conway and C. Brook, ‘Spatial Abilities Following Prenatal Androgen Abnormality: Targeting and Mental Rotations Performance in Individuals with Congenital Adrenal Hyperplasia’, Psychoneuroendocrinology 28:8 (2003), pp. 1010–26. • 24. I. Silverman, J. Choi and M. Peters, ‘The Hunter-Gatherer Theory of Sex Differences in Spatial Abilities: Data from 4 °Countries’, Archives of Sexual Behavior 36:2 (2007), pp. 261–8. • 25. S. G. Vandenberg and A. R. Kuse, ‘Mental Rotations, a Group Test of Three-Dimensional Spatial Visualization’, Perceptual and Motor Skills 47:2 (1978), pp. 599–604. • 26. Quinn and Liben, ‘A Sex Difference in Mental Rotation in Young Infants’. • 27. Hines et al., ‘Spatial Abilities Following Prenatal Androgen Abnormality’. • 28. M. Constantinescu, D. S. Moore, S. P. Johnson and M. Hines, ‘Early Contributions to Infants’ Mental Rotation Abilities’, Developmental Science 21:4 (2018), e12613. • 29. T. Koscik, D. O’Leary, D. J. Moser, N. C. Andreasen and P. Nopoulos, ‘Sex Differences in Parietal Lobe Morphology: Relationship to Mental Rotation Performance’, Brain and Cognition 69:3 (2009), pp. 451–9. • 30. Halpern, et al. ‘The Pseudoscience of Single-Sex Schooling’. • 31. Koscik et al., ‘Sex Differences in Parietal Lobe Morphology’. • 32. K. Kucian, M. Von Aster, T. Loenneker, T. Dietrich, F. W. Mast and E. Martin, ‘Brain Activation during Mental Rotation in School Children and Adults’, Journal of Neural Transmission 114:5 (2007), pp. 675–86. • 33. K. Jordan, T. Wüstenberg, H. J. Heinze, M. Peters and L. Jäncke, ‘Women and Men Exhibit Different Cortical Activation Patterns during Mental Rotation Tasks’, Neuropsychologia 40:13 (2002), pp. 2397–408. • 34. N. S. Newcombe, ‘Picture This: Increasing Math and Science Learning by Improving Spatial Thinking’, American Educator 34:2 (2010), p. 29. • 35. M. Wraga, M. Helt, E. Jacobs and K. Sullivan, ‘Neural Basis of Stereotype-Induced Shifts in Women’s Mental Rotation Performance’, Social Cognitive and Affective Neuroscience 2:1 (2007), pp. 12–19. • 36. I. D. Cherney, ‘Mom, Let Me Play More Computer Games: They Improve My Mental Rotation Skills’, Sex Roles 59:11–12 (2008), pp. 776–86. • 37. Там же. • 38. J. Feng, I. Spence and J. Pratt, ‘Playing an Action Video Game Reduces Gender Differences in Spatial Cognition’, Psychological Science 18:10 (2007), pp. 850–55; M. S. Terlecki and N. S. Newcombe, ‘How Important Is the Digital Divide? The Relation of Computer and Videogame Usage to Gender Differences in Mental Rotation Ability’, Sex Roles 53:5–6 (2005), pp. 433–41. • 39. R. J. Haier, S. Karama, L. Leyba and R. E. Jung, ‘MRI Assessment of Cortical Thickness and Functional Activity Changes in Adolescent Girls Following Three Months of Practice on a Visual-Spatial Task’, BMC Research Notes 2:1 (2009), p. 174. • 40. A. Moè and F. Pazzaglia, ‘Beyond Genetics in Mental Rotation Test Performance: The Power of Effort Attribution’, Learning and Individual Differences 20:5 (2010), pp. 464–8. • 41. E. A. Maloney, S. Waechter, E. F. Risko and J. A. Fugelsang, ‘Reducing the Sex Difference in Math Anxiety: The Role of Spatial Processing Ability’, Learning and Individual Differences 22:3 (2012), pp. 380–84. • 42. O. Blajenkova, M. Kozhevnikov and M. A. Motes, ‘Object-Spatial Imagery: A New Self-Report Imagery Questionnaire’, Applied Cognitive Psychology 20:2 (2006), pp. 239–63. • 43. J. A. Mangels, C. Good, R. C. Whiteman, B. Maniscalco and C. S. Dweck, ‘Emotion Blocks the Path to Learning under Stereotype Threat’, Social Cognitive and Affective Neuroscience 7:2 (2011), pp. 230–41. • 44. A. C. Krendl, J. A. Richeson, W. M. Kelley and T. F. Heatherton, ‘The Negative Consequences of Threat: A Functional Magnetic Resonance Imaging Investigation of the Neural Mechanisms Underlying Women’s Underperformance in Math’, Psychological Science 19:2 (2008), pp. 168–75. • 45. B. Carrillo, E. Gómez-Gil, G. Rametti, C. Junque, Á. Gomez, K. Karadi, S. Segovia and A. Guillamon, ‘Cortical Activation during Mental Rotation in Male-to-Female and Female-to-Male Transsexuals under Hormonal Treatment’, Psychoneuroendo crinology 35:8 (2010), pp. 1213–22. • 46. S. A. Berenbaum and M. Hines, ‘Early Androgens Are Related to Childhood Sex-Typed Toy Preferences’, Psychological Science 3:3 (1992), pp. 203–6. • 47. J. R. Shapiro and A. M. Williams, ‘The Role of Stereotype Threats in Undermining Girls’ and Women’s Performance and Interest in STEM Fields’, Sex Roles 66:3–4 (2012), pp. 175–83. • 48. M. Hines, V. Pasterski, D. Spencer, S. Neufeld, P. Patalay, P. C. Hindmarsh, I. A. Hughes and C. L. Acerini, ‘Prenatal Androgen Exposure Alters Girls’ Responses to Information Indicating Gender-Appropriate Behaviour’, Philosophical Transactions of the Royal Society B: Biological Sciences 371:1688 (2016), 20150125. • 49. ‘Women in Science, Technology, Engineering, and Mathematics (STEM)’, Catalyst website, 3 January 2018, https://www.catalyst.org/knowledge/women-science-technology-engineering-and-mathematics-stem (accessed 10 November 2018).