Книги онлайн и без регистрации » Историческая проза » Неизвестный Люлька. "Пламенные сердца" гения - Лидия Кузьмина

Неизвестный Люлька. "Пламенные сердца" гения - Лидия Кузьмина

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 104 105 106 107 108 109 110 111 112 ... 155
Перейти на страницу:

— Что характерно, — подчеркивал начальник ОКБ космического филиала Юрий Дмитриевич Блохин, — что основные конструкторские решения по всем комплектациям аналогов ЭПОСа были выполнены в единой, так сказать, сквозной схеме. В чем ее достоинство? Во-первых, трудоемкость в производстве при переходе от дозвукового варианта к гиперзвуковому возрастала незначительно. Да и росла только потому, что по мере усложнения решаемых задач на борт устанавливалось дополнительное и более совершенное оборудование. Во-вторых, благодаря сквозной схеме на подготовку производства к выпуску самих орбитальных самолетов времени потребовалось совсем немного.

Многочисленные лабораторные исследования, продувки моделей и аналогов в аэродинамических трубах ЦАГИ им. Н.Е. Жуковского, их стендовые отработки, имитирующие разные режимы и этапы полета, позволили с высокой степенью достоверности определить аэродинамические характеристики планера. Они стали исходными данными для разработчиков различных систем ЭПОСа. Для уточнения результатов «трубных исследований» и изучения свойств новых материалов, предусмотренных в конструкции будущего орбитального самолета, были выполнены с помощью ракет запуски моделей «Бор» в масштабах 1:3 и 1:2.

Конструкцию ЭПОСа делали достаточно легкой, но способной довольно долго работать в исключительно тяжелых условиях. Особенно при входе в плотные слои атмосферы после покидания космической орбиты. Ведь в полете с большой скоростью, а уход с орбиты предполагался на скорости, равной 8 км/с, в плотных слоях атмосферы возбуждаются чрезвычайно мощные тепловые потоки. В приграничном слое молекулы воздуха переходят в атомарный ряд, то есть разрушаются. А «осколки» — электроны, ионы и ядра атомов — образуют плазму, которая, соприкасаясь с поверхностью орбитального самолета, сильно нагревает ее. Наиболее подвержены нагреву передняя часть фюзеляжа, кромки крыла и киля.

По мере роста скорости летательных аппаратов алюминий и его сплавы в авиационных конструкциях стали уступать свое место новым сплавам, обладающим более высокой жаропрочностью. Ко времени работы по программе ЭПОСа уже применялись титановые сплавы и жаропрочные стали. На подходе были еще более жаростойкие и пластичные — бериллиевые и ниобиевые. Однако выносливость нового орбитального аппарата обеспечивалась не только жаростойким облачением, но и его уникальными аэродинамическими характеристиками и совершенными конструкциями. Ведь ЭПОС был рассчитан на спуск с орбиты в режиме самобалансировки на очень больших углах атаки — до 53 градусов при гиперзвуковом качестве 0,8, нем оно больше, тем лучше возможность бокового маневрирования. При этом основная тепловая нагрузка должна была восприниматься теплозащитным экраном (ТЗЭ) оригинальной конструкции. Как показали теплопрочностные испытания гиперзвукового аналога «105.13» на специальном стенде, максимальный его нагрев не превысил +1500 градусов по Цельсию, а остальные элементы конструкции, находясь в аэродинамической тени от теплозащитного экрана, нагревались и того меньше. Поэтому в постройке аналогов можно было применять титановые и даже в отдельных местах алюминиевые сплавы без специального покрытия. «Буран» же впоследствии пришлось обклеивать более 38 тысячами очень дорогостоящих плиток, изготовленных по сложнейшей технологии на основе тонких волокон чистого кварта. Это только один из факторов экономичности разработки 60-х годов по сравнению с программой «Бурана».

А какова конструкция самого экрана? Чтобы избежать разрушения от быстрого нагрева при входе в земную атмосферу, он должен обладать прежде всего высокой «пластичностью», какую мог бы обеспечить, к примеру, ниобиевый сплав. Но его тогда еще не выпускали, и конструкторы временно, до освоения производства ниобия, пошли на замену материала. Экран пришлось выполнить из жаропрочных сталей ВНС, причем не сплошным, а из множества пластин по принципу рыбьей чешуи. Он был подвешен на керамических подшипниках, при колебаниях температуры нагрева автоматически изменял свою форму, сохраняя стабильность положения относительно корпуса. Таким образом на всех режимах обеспечивалось постоянство конфигурации орбитального самолета.

ЭПОС имел и такую конструктивную особенность: в режиме спуска до входа в плотные слои атмосферы поворотные консоли крыла занимали вертикальное положение, становясь своего рода килями. В результате они оказывались в значительной степени защищенными от аэродинамического нагрева, а также существенно улучшали боковую и путевую устойчивость аппарата.

При уменьшении балансировочного угла до 30 градусов гиперзвуковое качество ЭПОСа улучшалось, возрастая до 1,5. Правда, нагрев экрана в таком случае мог заметно увеличиться, но не выше +1700 градусов — рубежа, допустимого для разрабатываемых сплавов. Зато возможности бокового маневрирования в атмосфере расширились: без включения двигателя, в чистом планировании можно было выбирать место посадки в радиусе 1500–1800 км. А с работающим воздушно-водородным двигателем АЛ-51, предусмотренным в компоновке ЭПОСа, расчетная дальность бокового маневра на дозвуковой крейсерской скорости далеко превосходила 2 тысячи километров.

А дальность бокового маневра по трассе спуска из космоса — очень важна. От этого зависит возможность экстренного прекращения орбитального полета в случае необходимости. И если маневр имеет дальность более 2 тысяч километров, орбиту можно покинуть на любом витке и приземлиться в любой удобной точке на площади в миллионы квадратных километров, а это, пожалуй, вся азиатская часть территории нашей страны.

Чтобы улучшить посадочные характеристики на последнем атмосферном участке спуска, была предусмотрена перебалансировка аппарата на малые углы атаки путем поворота консолей из фиксированного килевого положения в фиксированное крыльевое. Аэродинамическое качество в дозвуковом полете с разложенными консолями крыла возрастало до 4, а соответственно увеличивалась и дальность планирования.

На основе научно-технических исследований по ЭПОСу специалисты проанализировали возможности перехода от малоразмерного одноместного орбитального самолета к транспортному многоместному. Выяснилась замечательная особенность этой конструкторской разработки. При копировании аппарата в укрупненном масштабе отличные аэродинамические характеристики ЭПОСа сохраняются полностью, а тепловая нагрузка в полете с тем же углом атаки 53 градуса даже может уменьшиться до +1200 градусов. Почему? Да благодаря тому, что местные радиусы кривизны обтекаемой поверхности увеличиваются, а удельная нагрузка на несущую поверхность уменьшается.

Удачные посадочные характеристики ЭПОСа при укрупнении его масштабов также сохранялись или даже улучшались, что очень важно. Ведь в таком случае их можно было надежно отработать еще в полетах на аналогах малоразмерного орбитального аппарата.

Итак, почти весь основной цикл испытаний ЭПОСа и его систем был выполнен еще на земле в аэродинамических трубах, на моделирующих установках и стендах, а затем на летающих лабораториях типа Л-18. Провели стендовые исследования и газодинамического управления применительно ко всем участкам траектории полета. Полученные результаты надо было проверить в реальных условиях. Прежде всего — в полетах на аналогах ЭПОСа.

Дозвуковой аналог «105.11» создали к середине 70-х годов. Этот аппарат можно посмотреть в музее Военно-воздушных сил в подмосковном Монино. Он с присущими самолету аэродинамическими органами управления: элевонами, рулем направления на киле, балансировочным щитком. Непривычно только 4-стоечное убирающееся шасси. Стойки разнесены вдоль фюзеляжа попарно, что обеспечивало особенно хорошую устойчивость на пробеге. «Обуты» они в лыжи из износостойкого металла — пробег после приземления получался коротким. Эта прочная четырехногая «птица» могла производить посадку в любом месте на более-менее ровный грунт, ей даже не требовались специальные аэродромы с бетонным покрытием. Нужно только передние стойки «переобуть» в пневматические колеса и снять характеристики сил, воздействующих на шасси в лыжном варианте при движении аппарата по земле. Аналог ЭПОСа доставили на полигон в конце огромного испытательного аэродрома «Владимирское» в заволжской степи. Специальным краном поставили на твердый, прокаленный горячими ветрами грунт. Под тяжестью конструкции лыжи накрепко впечатались в него. Летчик-испытатель микояновской фирмы Авиард Фастовец занял место в кабине. Бешено загрохотал запущенный им двигатель, но аппарат — ни с места. Полили грунтовую полосу водой — не помогло. Летчик выключил двигатель, специалисты гадали, что предпринять. К изумлению всех присутствующих, начальник полигона Иван Иванович Загребельный посоветовал: «Перед аппаратом надо разбить арбузы — их здесь много. Вот тогда он побежит наверняка».

1 ... 104 105 106 107 108 109 110 111 112 ... 155
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?