Книги онлайн и без регистрации » Домашняя » Почему мы существуем? Величайшая из когда-либо рассказанных историй - Лоуренс Краусс

Почему мы существуем? Величайшая из когда-либо рассказанных историй - Лоуренс Краусс

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 83
Перейти на страницу:

Почему мы существуем? Величайшая из когда-либо рассказанных историй

Опять же, если где-то поблизости от этих двух зарядов поместить пробный заряд, на него будет действовать сила, направленная вдоль этих линий поля и пропорциональная по величине числу линий в соответствующей области.

Таким образом, Фарадей наглядно изображал природу электрических сил, действующих между частицами, что освобождало его от необходимости решать алгебраические уравнения, описывающие электрические силы. И что самое поразительное в этих картинках – математика в них отражена точно, а не приближенно.

Аналогичный графический способ отображения можно применить и к магнитам с магнитными полями, представляющими силы взаимодействия между магнитами (их экспериментально подтвердил Кулон), и к проводникам с током (законы взаимодействия для них вывел Андре-Мари Ампер). (До Фарадея все основные исследования законов электричества и магнетизма осуществлялись французами.)

Воспользовавшись этими ментальными костылями, мы можем попробовать заново описать открытое Фарадеем явление магнитной индукции следующим образом: возрастание или убывание числа линий магнитного поля, проходящих через проволочную рамку, вызовет в ней появление тока.

Фарадей быстро понял, что его открытие даст возможность преобразовывать механическую энергию в электрическую. Если прикрепить проволочную рамку к лопасти, которую заставляет вращаться, скажем, сила текущей воды, как в случае водяного колеса, и все это вместе окружить магнитом, то при повороте лопасти число линий магнитного поля, проходящих сквозь рамку, будет непрерывно меняться и в рамке станет постоянно возбуждаться ток. Вуаля – дальше идут Ниагарский водопад, гидроэнергетика и современный мир!

Одного этого было бы вполне достаточно, чтобы закрепить репутацию Фарадея как величайшего физика-экспериментатора XIX века. Но Фарадея мотивировала не технология как таковая, что еще возвышает его в моих глазах; больше всего я уважаю его за глубокое благоговение перед тайнами природы и готовность делиться своими открытиями со всеми, кто пожелает. Я уверен, он согласился бы, что главная польза, приносимая наукой, – изменение наших фундаментальных представлений о месте человека в мироздании. И в конечном итоге именно в этом был результат деятельности Фарадея.

Не могу не вспомнить о другом великом физике-экспериментаторе, более близком к нам по времени, – о Роберте Уилсоне, который уже в возрасте двадцати девяти лет возглавил Исследовательский отдел в Лос-Аламосе, где в ходе Манхэттенского проекта разрабатывалась атомная бомба. Много лет спустя он стал первым директором Национальной ускорительной лаборатории имени Ферми в Батавии (штат Иллинойс). Когда Лаборатория Ферми еще строилась, в 1969 г. Уилсона вызвали в конгресс, чтобы он обосновал необходимость расходования значительных сумм на этот экзотический новый ускоритель, который должен был исследовать фундаментальные взаимодействия элементарных частиц. На вопрос о том, полезен ли будет этот ускоритель для национальной безопасности (что с легкостью оправдало бы расходование средств в глазах членов комитета конгресса), он храбро ответил: «Нет», – но:

Он имеет отношение всего лишь к тому уважению, с которым мы относимся друг к другу, к человеческому достоинству, к нашей любви к культуре… Он имеет отношение к вопросу о том, являемся ли мы хорошими художниками, хорошими скульпторами, великими поэтами. Я имею в виду все то, что мы по-настоящему почитаем и перед чем преклоняемся в нашей стране, к чему чувствуем патриотизм. В этом смысле это новое знание тесно связано с честью и страной, но оно не имеет прямого отношения к защите нашей страны и только помогает сделать ее достойной защиты.

Открытия Фарадея позволили сформировать и обеспечить энергией нашу цивилизацию, осветить наши города и улицы, запитать наши электрические устройства. Трудно представить себе другое открытие, глубже укорененное в структуру современного общества. Но еще важнее и глубже – и, кстати говоря, именно это делает вклад Фарадея в нашу историю таким значительным – то, что он обнаружил недостающую деталь головоломки, изменившую наши представления буквально обо всем в физическом мире, начиная с самого света. Если Ньютон был последним магом, то Фарадей – это последний из современных ученых, живший во тьме, если говорить о природе света. После его работ ключ к пониманию истинной природы нашего главного окна в окружающий мир лежал у всех на виду и ждал только подходящего человека, который бы его поднял.

* * *

Не прошло и десяти лет, как молодой шотландский физик-теоретик, которому долго не везло, сделал следующий шаг.

Глава 3 Свет сквозь стекло ясное

Не бывает ничего слишком чудесного, чтобы не быть правдой, если только это согласуется с законами природы; а в делах, подобных этим, эксперимент – лучшая проверка такого согласия.

Фарадей, запись № 10 040 в лабораторном журнале (18 марта 1849 г.)

Величайший физик-теоретик XIX столетия Джеймс Кларк Максвелл, которого Эйнштейн позже сравнит с Ньютоном по степени влияния на физику, по случайному совпадению родился в тот самый год, когда Майкл Фарадей совершил великое экспериментальное открытие – обнаружил магнитную индукцию.

Подобно Ньютону, Максвелл тоже начал свою научную карьеру с острого интереса к цвету и свету. Ньютон исследовал спектр видимых цветов, на которые расщепляется белый свет, проходя сквозь призму, но Максвелл, будучи еще студентом, исследовал обратный вопрос: каков минимальный набор первичных цветов, способный воспроизвести для человеческого глаза все видимые цвета, содержащиеся в белом свете? При помощи набора цветных волчков он показал, что, по существу, все воспринимаемые нами цвета можно получить из смеси красного, зеленого и синего – факт, известный всякому, кто хоть раз втыкал RGB-кабель в разъем цветного телевизора. Максвелл воспользовался этим, чтобы изготовить первую в мире, еще очень несовершенную, цветную фотографию. Позже он заинтересовался поляризованным светом, который получается из световых волн, электрическое и магнитное поля которых колеблются только в определенных направлениях. Он зажимал бруски желатина между поляризующими призмами и пропускал через них свет. Если две призмы были ориентированы таким образом, чтобы пропускать только свет, поляризованный в разных, взаимно перпендикулярных направлениях, то при размещении их друг за другом никакой свет через них не проходил. Однако если в желатине между призмами имелись напряжения, то плоскость поляризации света немного поворачивалась при прохождении через вещество, так что некоторое количество света проходило и сквозь вторую призму. Наблюдая эти остатки света, проходящие через вторую призму, Максвелл получил возможность исследовать напряжения в веществе. Сегодня этот метод стал полезным инструментом поиска возможных механических напряжений в сложных структурах.

Даже эти хитроумные эксперименты не вполне отражают ненасытный интеллект Максвелла или его математические способности, проявившиеся удивительно рано. Печально, что Максвелл умер в возрасте всего сорока восьми лет, но и за такой короткий срок он успел сделать необычайно много. Его любознательная натура наглядно отражена в нескольких фразах, которые его мать добавила к письму его отца к свояченице, написанном, когда Максвеллу было всего три года:

1 ... 5 6 7 8 9 10 11 12 13 ... 83
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?