Книги онлайн и без регистрации » Домашняя » Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - Сэм Кин

Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - Сэм Кин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 79 80 81 82 83 84 85 86 87 ... 103
Перейти на страницу:

Кристаллические формы твердых веществ лучше всего образуются при низких температурах. Если температура опустится достаточно сильно, то хорошо известные элементы могут стать практически неузнаваемыми. Даже практически инертные благородные газы, переходя в твердое агрегатное состояние, могут пойти на связь с другими элементами. Канадский химик Нейл Бартлетт смог опровергнуть существовавшую десятилетиями догму и синтезировал первое соединение благородного газа (ксенона), представляющее собой твердый оранжевый кристалл. Это произошло в 1962 году[151]. Следует оговориться, что реакция протекала при комнатной температуре, но в таких условиях ксенон реагирует только с гексафторидом платины – веществом не менее едким, чем суперкислота. Кроме того, из всех стабильных инертных газов ксенон обладает самыми крупными атомами и реагирует гораздо легче, чем другие подобные газы, поскольку его внешние электроны не так крепко связаны с ядром. Чтобы заставить реагировать более легкие благородные газы, чьи атомы значительно более компактны, приходится радикально понизить температуру и практически обездвижить эти атомы. Криптон вступает в реакцию лишь при температуре около -151 °C, когда сверхагрессивный фтор может к нему подступиться.

Но запустить реакцию в криптоне было не сложнее, чем смешать соду с уксусом, если сравнить эту задачу с отчаянными попытками вовлечь в химические реакции аргон. После того как в 1962 году Бартлетт получил соединение ксенона, а в 1963-м – твердые вещества, содержавшие криптон, прошло еще тридцать семь долгих лет, прежде чем финским ученым удалось создать условия для реакции с аргоном. Это произошло в 2000 году. Эксперимент был сравним по филигранности с произведением Фаберже, для него потребовалось перевести аргон в твердое состояние. Еще в реакции участвовали газообразный фтор, газообразный водород, а также суперактивный компонент-затравка – йодид цезия, который и запускал реакцию. Наконец, потребовались тщательно хронометрированные импульсы ультрафиолетового света и невообразимый холод в -265 °C. Как только становилось немного теплее, соединения аргона распадались.

Тем не менее ниже этой температуры гидрофторид аргона – вполне устойчивый кристалл. Финские ученые объявили о своем достижении в статье, название которой было исключительно незатейливым для такой научной работы: «Стабильное соединение аргона». Сам факт получения этого соединения был достаточным поводом для гордости. Ученые уверены, что даже в самых холодных уголках космоса миниатюрные гелий и неон никогда не образуют соединения с другими элементами. Поэтому в настоящее время аргон остается самым неуступчивым элементом, соединение которого все-таки удалось получить человеку.

Учитывая, насколько аргон не любит изменять своей природе, получение такого вещества, конечно, было огромным научным достижением. Тем не менее ученые не считают соединения благородных газов и даже необычную форму олова, возникающую в результате альфа-бета перехода, самостоятельными агрегатными состояниями вещества. Новое агрегатное состояние требует наличия принципиально иного уровня энергии, при котором принципы взаимодействия атомов существенно изменяются. Именно поэтому твердые тела, в которых (почти) все атомы неподвижны, жидкости, в которых частицы могут обтекать друг друга, а также газы, частицы которых свободно перемещаются в любом направлении, действительно являются разными агрегатными состояниями вещества.

При этом между газами, жидкостями и твердыми телами есть немало общего. Во-первых, их частицы являются цельными и отдельными друг от друга. Но такая независимость превращается в анархию, если разогреть вещество до состояния плазмы, в котором атомы начинают распадаться. Если же сильно охладить вещество, то в нем складываются ансамбли, в которых частицы начинают слипаться самыми причудливыми способами.

Возьмем, к примеру, сверхпроводники. Электричество представляет собой поток электронов, возникающий в цепи. В медном проводе электроны бегут от одного атома к другому, обтекают их, а когда какие-то электроны попадают внутрь атомов, провод нагревается и теряет энергию, отдаваемую в виде тепла. Очевидно, в сверхпроводниках подобного рассеивания энергии почему-то не происходит, так как электроны, бегущие между атомами сверхпроводящего вещества, никогда не иссякают.

На самом деле, ток может сохраняться в сверхпроводнике практически вечно, если вещество остается охлажденным до нужной температуры. Это свойство было впервые обнаружено в 1911 году в образце ртути, охлажденной примерно до -277 °C. В течение десятилетий большинство ученых придерживалось такой точки зрения на сверхпроводимость: у электронов в подобном состоянии просто появляется больше места для маневра. Атомы в сверхпроводящем состоянии практически не имеют энергии на вибрацию, поэтому между ними сохраняются более стабильные коридоры, по которым могут бежать электроны, ни с чем при этом не сталкиваясь. Это объяснение является относительно верным, но лишь в 1957 году трое ученых смогли выяснить, что при таких низких температурах метаморфозы происходят с самими электронами.

Пролетая мимо атомов в сверхпроводнике, электроны испытывают определенное притяжение со стороны атомных ядер. Положительно заряженные ядра немного смещаются в направлении электрона, в результате чего в атоме образуется зона с высокой плотностью положительного заряда. Этот плотный заряд притягивает новые электроны, которые в определенном смысле становятся «спаренными» с первой волной электронов. Это не сильная химическая связь между электронами, она больше напоминает те слабые взаимодействия, которые возникают между атомами фтора и аргона. Вот почему такая сцепка происходит только при очень низких температурах, когда атомы почти не вибрируют и не расталкивают электроны в разные стороны. При таких низких температурах мы не можем считать электроны изолированными частицами; они образуют группы и действуют вместе. В такой электрической цепи отдельные электроны не могут сбиться с курса или включиться в атом, поскольку прежде, чем такой электрон успеет замедлиться, общий поток электронов увлечет его за собой. Ситуация напоминают старую, уже запрещенную игровую тактику, которая применялась в американском футболе. Игроки без шлемов просто сцеплялись за руки и бежали через все поле – такой летящий косяк электронов. На микроуровне это состояние приводит к сверхпроводимости, при которой миллиарды миллиардов электронов действуют точно так же.

Здесь я описал так называемую BCS-теорию сверхпроводимости. Она названа по первым буквам фамилий предложивших ее ученых: Джона Бардина, Леона Купера (электронные пары называются «парами Купера») и Роберта Шриффера[152]. Это был тот самый Джон Бардин, который участвовал в изобретении германиевого транзистора, получил за это Нобелевскую премию и опрокинул сковородку с яичницей, услышав эту новость. После того как в 1951 году Бардин покинул Bell Labs и отправился в Иллинойс, он всецело сосредоточился на изучении сверхпроводимости. Через шесть лет группа BCS полностью сформулировала новую теорию. Она оказалась настолько качественной и точной, что в 1972 году трое ученых совместно получили за свою работу Нобелевскую премию по физике. На этот раз Бардин снова отличился – он пропустил пресс-конференцию в университете, так как не смог выехать из гаража, где незадолго до того поставил новую электрическую дверь на транзисторном управлении. Но, приехав в Стокгольм повторно, Бардин все-таки познакомил своих уже взрослых сыновей со шведским королем – как и обещал в пятидесятые годы.

1 ... 79 80 81 82 83 84 85 86 87 ... 103
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?