Покоренная плазма - Борис Васильевич Фомин
Шрифт:
Интервал:
Закладка:
Выше я не случайно назвал слой плазмы, окружающий Землю, «покрывалом». Плазма небезразлична к магнитным полям. Благодаря этому наша планета как бы изолирована от внешних магнитных воздействий. Кроме того, через плазменную оболочку не способно проникнуть наиболее мощное, а следовательно, и наиболее опасное для всего живого ультрафиолетовое излучение Солнца. Исчезни плазменный пояс вокруг Земли, и наша планета превратится в безжизненную пустыню.
Итак, материя Вселенной на 99 процентов — плазма. Планеты, космическая пыль, метеоры по весу занимают очень скромное место.
Но живем мы на Земле, и поэтому интересно знать, где встречается плазма в наших, земных условиях?
Плазменную «продукцию» постоянно дает сама природа.
Что такое молния, прорезывающая небо во время грозы? Плазма, возникшая в результате разряда атмосферного электричества.
Еще Ломоносов справедливо говорил, что атмосферное электричество возникает от «трения» мелких частиц, из которых состоят водяные и другие «пары». Это отдаленно похоже на электризацию янтаря, натираемого шерстью.
Ветер постоянно перемешивает воздух и тем самым разделяет электрические заряды, относит их друг от друга.
Чаще всего нижняя часть облака оказывается заряженной отрицательным электричеством. Когда в этом заряде электронов запасется очень много, то между облаком и Землей — этими природными «электродами» — возникает гигантский электрический разряд — молния.
Не оставляет сомнения и то, что и другой вид молнии — так называемая шаровая молния — тоже плазма. Люди много раз наблюдали огненные шары, иногда появляющиеся после грозы; внезапно возникший шар медленно плывет с потоком воздуха, может влететь в окно, в печную трубу и, взорвавшись, поджечь здание или убить человека. Загадка шаровой молнии до сих пор полностью не разгадана, но вполне вероятно, что это тоже плазма.
Но чаще всего мы имеем дело с плазмой, созданной самим человеком.
Пламя газовой горелки и светящиеся буквы реклам, раскаленные струи, вылетающие из сопла реактивных самолетов и космических ракет, и дуга электросварки — все это плазма. Без нее не смогут работать лампы дневного света и автомобильные двигатели, без нее не получат электроэнергию пригородные электропоезда, а фотограф не сделает снимка в сумерках. Без плазмы не обходятся ни машиностроители, ни взрывники, ни химики, ни даже врачи. Она всюду, где человек занят делом, она — верный помощник человека.
Но люди добились этого не сразу. Они много потратили сил, прежде чем покорили плазму.
Глава III
Ток через газы
Искра доктора Воля
Заглянем в далекое прошлое и посмотрим, как удалось человеку получить первую «искусственную» плазму.
…Мы в Англии конца XVII века. Об электричестве знают столько же мало, как во времена Фалеса Милетского. Правда, ученые все чаще и чаще задумываются над загадкой электрических сил, проводят опыты по электризации янтаря и других тел, но это больше напоминает забаву, чем науку.
Еще не была изобретена паровая машина и, кроме силы падающей воды и ветра, люди не знали других источников энергии. Вся деятельность человека, в том числе и научная, была под большим влиянием религии.
Итак, Англия, 1698 год. Некий доктор Воль, как и другие его коллеги-ученые, занимается физическими опытами. Пробует и он электризовать янтарь.
Однажды доктору попался большой кусок этой затвердевшей смолы. Воль решил посильнее наэлектризовать его. Долго натирал он кусок янтаря шерстью, изрядно утомился, но своего занятия не бросал. Вдруг из янтаря выскочила искра длиной не меньше двух сантиметров. «При этом раздался такой звук, точно в печке треснул уголь», — так описывал этот случай сам ученый.
Почему я говорю об этой искорке, полученной более двух с половиной веков назад таким несовершенным способом? Да потому, что это был первый искусственный разряд электричества в газе, первый кусочек плазмы, созданный человеком. Одновременно это был один из первых шагов в развитии учения об электричестве.
Так у природной искры — молнии появился «двойник» на земле — искровой электрический разряд.
Кстати замечу, что само слово «разряд» появилось много позже после опытов доктора Воля.
Почти через полстолетия после этого события житель немецкого городка Лейдена Мушенбрек построил первые кладовые для электричества — лейденские банки.
Представьте себе большой круглый стакан из стекла. Внутренняя и наружная поверхности стакана оклеены станиолем — серебристой бумагой, наподобие той, в которую заворачивают шоколадные конфеты. Это и есть лейденская банка, или конденсатор. Если при помощи проводов подключить к обкладкам этого конденсатора электростатическую машину и начать ее вращать, то на обкладках лейденской банки скопятся заряды противоположных знаков. Если замкнуть накоротко обкладки, заряды уничтожатся. А в момент замыкания возникнет электрическая искра.
Вот отсюда и пошло название «электрические разряды». Оно прочно вошло в нашу речь и сейчас употребляется всюду даже тогда, когда ток через газ получается без каких-либо конденсаторов.
Искровой разряд возникает при большом давлении газов, когда между электродами приложено высокое напряжение. Чтобы пробить слой воздуха толщиной всего пять сантиметров, при электродах-шарах диаметром по метру требуется напряжение в сто тысяч вольт. Чем меньше диаметр шаров разрядника, тем меньшее напряжение нужно для пробоя газа. При искровом разряде в плазме заряды образуют узкие, ярко светящиеся каналы, распространяющиеся с огромной скоростью.
Как только на электродах напряжение достигнет своей первоначальной величины, вслед за первой искрой проскакивает вторая, третья и т. д.
Ученые определили, что внутри безобидной на вид электрической искры температура на мгновение достигает десяти тысяч градусов! Такая температура может быть причиной дополнительной ионизации газа за счет тепла. Поэтому мы вправе считать, что искра — это небольшой кусочек солнца, изготовленный с помощью приборов.
Сейчас ученые получают всевозможные искровые разряды. Некоторые из них обладают такой мощностью, что соперничают с молнией. Создавая их в лабораториях, ученые исследуют механизм развития грозовых разрядов.
Получены и такие искровые разряды, которых нет в природе. Так называемый скользящий искровой разряд получают при разряде между плоским электродом и стержнем, разделенными стеклянной или эбонитовой прокладкой. Разряд обтекает прокладку и создает очень красивое зрелище.
По фигурам, созданным скользящим разрядом, определяют величину напряжения, приложенного между электродами. Это необходимо, например, при исследованиях молний.
Дуга Василия Петрова
В одной из книг, вышедших в России в начале прошлого