Книги онлайн и без регистрации » Домашняя » Перспективы отбора - Елена Наймарк

Перспективы отбора - Елена Наймарк

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 81
Перейти на страницу:

Перспективы отбора Перспективы отбора

В популяциях, насчитывающих миллионы особей, в каждом поколении возникает множество новых мутаций — и вредных, и полезных, и нейтральных (напомним, что категория мутации определяется ее влиянием на приспособленность, то есть на эффективность передачи особью своих генов следующим поколениям). Все эти мутации вносят вклад в среднюю приспособленность особей, от которой зависит скорость роста численности популяции. Возникновение новых мутаций и изменение частоты их встречаемости под действием отбора и генетического дрейфа — самые фундаментальные эволюционные процессы. Нельзя понять эволюцию, не изучив их во всех подробностях.

Но как уследить за тысячами мутаций, происходящих у миллионов особей? Секвенировать целиком миллионы геномов — неподъемная задача даже при современном уровне развития биотехнологий. Если же применять выборочное секвенирование, то в поле зрения исследователей попадут только те мутации, которые достигли высокой частоты встречаемости (например, как в Исследовании № 3). Картина получится весьма неполной. Ведь многие возникающие полезные мутации, вероятно, никогда не становятся массовыми, однако свой вклад в общую приспособленность тем не менее вносят.

Альтернативный подход состоит в том, чтобы пометить отдельные клоны (клетки, произошедшие от одной и той же родительской клетки) наследуемой генетической меткой, а потом следить, как меняется численность каждого из них. Если численность какого-то клона вдруг начала экспоненциально расти, в то время как число всех особей популяции остается постоянным, значит, у одного из представителей этого клона возникла полезная мутация. При этом скорость роста является мерой полезности мутации. Например, если рост численности клона описывается уравнением N = N0 × (1 + 0,05)t, где время t измеряется в поколениях, значит, мутация повысила приспособленность на 5 % (в таких случаях говорят, что полезность мутации, обозначаемая буквой s, равна 0,05).

Именно такое маркирование и осуществили американские биологи, продемонстрировав настоящий прорыв в технике наблюдений за эволюцией многомиллионных популяций (Levy et al., 2015). Ученые работали с двумя бесполыми популяциями дрожжей (их искусственно лишили способности к половому размножению, так что они размножались только почкованием) численностью по 108 клеток. Популяции были произведены от одной-единственной предковой клетки, то есть изначально геномы всех дрожжей были одинаковыми. В каждой популяции были помечены индивидуальными генетическими метками примерно по 500 000 клонов. Как это удалось сделать? Сначала изготовили большую коллекцию кольцевых молекул ДНК — плазмид, — содержащих случайные двадцатинуклеотидные последовательности (генетический «штрихкод»). Эти плазмиды внедрялись в дрожжевые клетки, геномы которых были предварительно модифицированы таким образом, чтобы плазмиды встраивались в строго определенное место генома при помощи особого фермента — Cre-рекомбиназы. В итоге удалось получить две популяции численностью по 108 клеток, в которых каждая клетка принадлежала к одному из полумиллиона помеченных клонов.

Затем в течение 168 поколений обе популяции адаптировались к «голодной» среде, где размножение ограничивалось количеством глюкозы (как и в эксперименте Ленски). Численность каждого клона отслеживалась путем массового секвенирования небольшого фрагмента генома, содержащего «штрихкод». Секвенировать приходилось лишь 0,002 % генома, что позволило резко увеличить разрешающую способность метода по сравнению с полногеномным секвенированием. В поле зрения исследователей попали даже те мутации, частота встречаемости которых в популяции никогда не превышала 10–5, тогда как секвенирование полных геномов позволило бы отследить лишь клоны с относительной численностью 10–2 и выше. В результате вместо 25 000 зарегистрированных мутаций исследователи сумели бы обнаружить лишь около 15 (для сравнения вспомним, что в Исследовании № 3 удалось проследить судьбу только тех мутаций, чья частота встречаемости достигала 10 %, то есть 10–1, или более).

Впрочем, даже зная численность каждого клона в разные моменты времени, определить, в каком из них возникла полезная мутация, — не такая простая задача (рис. 4.1). Каждая мутация возникает сначала у одной особи. Пока число потомков удачного мутанта невелико, динамика их численности определяется не столько приспособленностью (и следовательно, отбором), сколько случайными колебаниями (дрейфом). Большая часть вновь возникающих полезных мутаций теряется из-за дрейфа: потомки удачного мутанта просто не успевают достичь такой численности, при которой отбор «заметит» их полезное свойство и начнет его поддерживать. Мутация становится заметна для отбора (и выходит из-под власти дрейфа) лишь по достижении численности мутантов, сопоставимой с 1/s. Например, мутация с полезностью 0,01 (повышающая приспособленность на 1 %) становится заметна для отбора при числе мутантов около 100. Мутантному клону должно повезти, чтобы его численность случайно (то есть за счет дрейфа) доросла до этого порога, — и лишь тогда за дело возьмется отбор. Такую мутацию называют «установившейся». Это значит, что она уже не потеряется из-за дрейфа.

После того как мутация «установилась», численность клона будет экспоненциально расти. По скорости роста можно оценить полезность мутации (s), а экстраполяцией в прошлое примерно определить время возникновения мутации (τ). Впрочем, этот удобный для количественного анализа период в истории клона будет продолжаться лишь до тех пор, пока в геноме, уже содержащем одну полезную мутацию, не возникнет вторая. После этого все расчеты резко затрудняются и картина смазывается. Именно поэтому данная методика позволяет анализировать лишь начальные этапы адаптации — пока вероятность возникновения дополнительных полезных мутаций пренебрежимо мала (а она перестает быть таковой, когда численность клона приближается к 1/Ub, где Ub — частота возникновения полезной мутации в расчете на особь за поколение).

Перспективы отбора

рис. 4.1. Типичная судьба клонов бесполых организмов в ходе адаптации. Темно-серым цветом показана динамика численности клона дрожжей, в котором не возникло полезных мутаций. Такой «нейтральный» клон, скорее всего, не достигнет высокой численности и будет вытеснен более успешными конкурентами. Светло-серым цветом показана судьба клона, в котором в момент времени τ возникла полезная мутация (изображена звездочкой). Пока численность такого клона мала, он может вымереть просто случайно (из-за дрейфа). Чтобы отбор начал поддерживать носителей полезной мутации, клон должен достичь (опять-таки случайно) пороговой численности, которая для мутации с полезным эффектом s примерно равна 1/s. После прохождения этого порога клон с полезной мутацией вступает в фазу экспоненциального роста численности. Когда численность клона приблизится к 1/Ub, где Ub — частота возникновения полезных мутаций, в нем с большой вероятностью начнут появляться дополнительные полезные мутации. Шкала по вертикальной оси логарифмическая. По рисунку из Levy et al., 2015.

1 ... 4 5 6 7 8 9 10 11 12 ... 81
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?