Курс на Марс. Самый реалистичный проект полета к Красной планете - Роберт Зубрин
Шрифт:
Интервал:
Закладка:
Основная аналогия, которую я хотел бы провести, – это аналогия между Марсом в грядущую эпоху освоения и Северной Америкой прошлого. Наша Луна, близкая к «столичной» планете, но бедная с точки зрения ресурсов, напоминает Гренландию. Другие объекты, такие как астероиды главного пояса, могут быть богаты ресурсами для возможного экспорта на Землю в будущем, но на них вряд ли удастся создать полноценное самобытное общество – их я сравниваю с Вест-Индией. Только Марс имеет полный набор ресурсов для развития местной цивилизации, и только Марс является подходящей целью для настоящей колонизации. Как и Америка в ее взаимоотношениях с Великобританией и Вест-Индией, Марс обладает преимуществом благодаря своему расположению – близости к астероидам, которые позволят ему эффективно вести добывающую деятельность в интересах Земли. Но из-за близоруких расчетов европейских государственных деятелей и финансистов XVIII века Америку никогда не считали удобной базой для торговли сахаром и специями из Вест-Индии или внутренней торговли мехом и не рассматривали как потенциальный рынок для промышленных товаров. У Америки было другое предназначение – стать домом для новой ветви человеческой цивилизации, местом, где гуманистические идеалы сочетаются с пограничными условиями, и в результате – двигателем для небывалого прогресса и экономического роста. Богатство Америки одновременно состояло и в том, что она могла дать своим новым жителям все, и в том, что в нее приезжали люди правильного склада ума. Особенности жизни в новом мире, которые в случае Америки создали культуру практичных, находчивых и изобретательных людей, будут с сто раз актуальнее применительно к Марсу.
Марс суровее, чем любое место на Земле. Но, если человек сможет приспособиться к таким условиям, его жизнь станет лучше. Марсиане будут благоденствовать.
Выбор транспорта зависит от места назначения. Точно так же, как открытие Нового Света подготовило почву для революции в европейском кораблестроении, основание марсианской базы потребует новых видов космических двигательных систем, которые сделают колонизацию Марса достижимой с коммерческой точки зрения. Эти новые системы, гораздо более производительные, чем нынешние, уже существуют в виде проектов и дожидаются своего часа. Давайте посмотрим, что может нам принести будущее.
Современные ракетные системы запуска лишь на 2 % превосходят реактивные самолеты в эффективности переноса грузов. Причина проста: ракеты приходится нагружать необходимым для их собственного движения окислителем, в то время как реактивные самолеты получают его из воздуха. Поскольку окислитель составляет около 75 % от общего веса топлива, это чрезвычайно уменьшает производительность ракет. Ракеты-носители по пути на орбиту летят через огромные количества окислителя. Почему бы не пытаться использовать хотя бы какую-то его часть?
К сожалению, развитию сверхзвукового воздушно-реактивного двигателя препятствуют технические трудности и отсутствие желания вести такую работу. Текущие ПВРД, используемые на некоторых ракетах, могут развивать скорость до 5,5 Маха, но, если повышать ее дальше, нельзя будет замедлить воздух, который входит в реактивный двигатель, до дозвуковых скоростей так, чтобы не нагревать его слишком сильно. Таким образом, сжигание топлива в двигателе должно происходить в сверхзвуковом потоке. На это способен двигатель нового типа, сверхзвуковой ПВРД, в некотором смысле он превосходит существующие реактивные двигатели так же, как реактивные самолеты превзошли пропеллерные. Национальная программа разработки воздушно-космического самолета была отменена в США в 1993 году, когда ее сочли недостаточно значимой, но ученые успели провести обширные компьютерные вычисления, показавшие, что сверхзвуковые реактивные двигатели будут работать. Несколько менее сложный с технической точки зрения вариант, который может обладать многими преимуществами сверхзвукового ПВРД, – это ракета с двигателем, дожигающим топливо в воздушном пространстве, то есть ракета, получающая часть необходимого ей окислителя из атмосферы во время взлета. Такие ракеты, которые могут развить удельный импульс более 1000 секунд, были продемонстрированы на испытательном стенде компанией Маркуардт в 1966 году. К сожалению, из-за очередных прихотей бюрократической системы программу отменили до того, как двигатели начали тестировать в полетах.
Использование сверхзвуковых прямоточных воздушных реактивных двигателей или двигателей с дожиганием топлива хотя бы во время части полета одноступенчатой ракеты (РОСД) к орбите значительно увеличило бы возможную полезную нагрузку. Это именно то, что нужно, чтобы удовлетворить логистические требования развивающейся программы заселения Марса, для которой потребуются дешевые поставки большого количества груза на орбиту и за ее пределы. Колонизация Марса, таким образом, занимает центральное место в развитии технологий, которые предоставят нам дешевый доступ в космос.
Ключевым показателем производительности ракеты является ее удельный импульс, количество секунд, за которое двигатель использует фунт топлива, чтобы получить фунт тяги. Лучшие химические ракеты, доступные сегодня, имеют удельный импульс около 450 секунд, в то время как для ядерного ракетного двигателя он может составлять около 900 секунд.
Но есть еще один способ достичь высокого удельного импульса. Это ионизация газа путем удаления части электронов из его атомов, а затем его ускорение с помощью сил притяжения и отталкивания электростатической решетки. Этот метод известен как электрическое реактивное движение, или «ионный привод». В сходной концепции газ преобразуется в плазму, которая затем выбрасывается из магнитного сопла, создавая тягу.
Рис. 8.4. Космический аппарат с ядерным электрическим двигателем потребует очень больших систем реакторов. Подобные транспортные системы сейчас провозглашают ключом к быстрым полетам на Марс, но это напрасная надежда, так как такие ракеты набирают ускорение очень медленно. Однако поскольку они очень экономно расходуют топливо, то, возможно, когда-нибудь будут использованы, чтобы значительно уменьшить затраты на транспортировку грузов на Марс (иллюстрация предоставлена НАСА)
В любом случае, используя электрические двигатели, можно генерировать удельные импульсы до многих тысяч секунд, даже не нагревая выхлопной газ до очень высоких температур. Это не просто теория, но реальный факт – ионные приводы сегодня используются для маневров по поддержанию стационарных орбит многих спутников. Но, если необходимо создать большую тягу, понадобится много электроэнергии. Например, для 120-тонного космического корабля потребуется мощность 5 МВт (это примерно в 70 раз больше, чем запланировано для МКС), чтобы сгенерировать тягу в 280 ньютонов (около 60 фунтов) с удельным импульсом в 5000 секунд. Однако если предположить, что у вас есть такое большое количество энергии, можно сгенерировать ΔV = 30 километров в секунду, необходимую для путешествия с низкой околоземной орбиты к Марсу и обратно, примерно за один год непрерывного создания тяги. Космический корабль с ядерным электрическим двигателем мог бы достичь такого невероятно большого значения ΔV только при отношении масс около 1,82. Траектории, по которым должны двигаться транспортные средства с электрическим двигателем, обычно требуют гораздо больших ΔV (как правило, в два раза), чем химические двигательные установки, чтобы добраться из одной точки Солнечной системы в другую, но, так как удельный импульс примерно в 10 раз выше, можно спокойно улететь значительно дальше, если не позволять самой массе ядерной электрической двигательной системы чрезмерно возрасти.