Объясняя мир. Истоки современной науки - Стивен Вайнберг
Шрифт:
Интервал:
Закладка:
Как и квантовая механика, ньютоновская теория Солнечной системы стала подобием того, что позже стало называться Стандартной моделью. Я ввел этот термин в 1971 г., чтобы описать существующую на то время теорию структуры и эволюции расширяющейся Вселенной, объяснив:
«Конечно, вполне возможно, что эталонная[23] модель частично или полностью неверна. Однако ее ценность заключается не в ее непоколебимой справедливости, а в том, что она служит основой для обсуждения огромного разнообразия наблюдаемых данных. Обсуждение этих данных в контексте эталонной космологической модели может привести к уяснению их значения для космологии независимо от того, какая модель окажется правильной в конечном счете»{278}.
Немного позже я и другие физики начали использовать термин «стандартная модель» по отношению к разрабатываемой нами теории элементарных частиц и их различных взаимодействий. Конечно, последователи Ньютона не пользовались этим термином, когда говорили о ньютоновской теории Солнечной системы, но, возможно, им стоило бы это сделать. Ньютоновская теория, конечно, обеспечила единую основу для астрономов, пытающихся объяснить наблюдения, не укладывающиеся в элементарные законы Кеплера.
В конце XVIII и начале XIX вв. методы приложения теории Ньютона для решения задач, где задействовано более двух тел, разрабатывались многими учеными. Одно новшество, имеющее огромную значимость для будущего науки, было введено в начале XIX в. Пьером-Симоном Лапласом. Вместо того чтобы суммировать силу притяжения, исходящую от каждого тела в такой совокупности, как Солнечная система, можно высчитать поле – состояние пространства, которое в каждой точке дает величину и направление ускорения, производимого всеми массами вместе. Чтобы рассчитать поле, необходимо решить несколько дифференциальных уравнений, которым оно подчиняется (эти уравнения задают условия изменения поля, когда точка, в которой оно измеряется, смещается по одному из трех перпендикулярных направлений). Этот подход дает почти тривиальное доказательство теоремы Ньютона о том, что сила притяжения, производимая массой сферической формы, обратно пропорциональна квадрату расстояния до центра сферы. Еще более важным, как мы увидим в главе 15, оказалось то, что концепция поля сыграла принципиально важную роль в понимании природы электричества, магнетизма и света.
Эти математические инструменты особенно впечатляюще были использованы в 1846 г., когда с их помощью удалось предсказать существование и расположение планеты Нептун из отклонений положений планеты Уран от ранее рассчитанной орбиты. Это было сделано независимо Джоном Кучем Адамсом и Жаном Жозефом Леверье. Нептун был обнаружен вскоре после этого в указанном месте.
Некоторые расхождения между теорией и наблюдениями по-прежнему оставались в движении Луны, в движении комет Галлея и Энке и в прецессии перигелия орбиты Меркурия, которая, по наблюдениям, была на 43" за столетие больше, чем можно было ожидать, если принимать во внимание силы притяжения других планет. Для расхождений в движении Луны и комет были в конце концов найдены причины, не связанные с силами притяжения, но случай с прецессией Меркурия не был объяснен до создания в 1915 г. Общей теории относительности Альбертом Эйнштейном.
По теории Ньютона сила притяжения в заданной точке и в заданное время зависит от расположения всех масс, поэтому неожиданное изменение любого из этих положений (например, вспышка на поверхности Солнца) создает мгновенное изменение сил притяжения повсюду. Это противоречило принципу Специальной теории относительности Эйнштейна (созданной в 1905 г.) о том, что ни одно воздействие не может распространяться быстрее света. Такой конфликт указывал на то, что существует необходимость в пересмотре теории тяготения. В Общей теории относительности Эйнштейна неожиданное изменение в расположении масс производит изменение в гравитационном поле лишь в непосредственной близости от этих масс. Затем это изменение со скоростью света распространяется на большие расстояния.
Общая теория относительности отвергла положение Ньютона об абсолютном времени и пространстве. Лежащие в его основе уравнения остаются одинаковыми во всех системах отсчета, независимо от того, движутся ли эти системы отсчета ускоренно или вращаются. Так что Лейбниц был бы этим доволен, но на самом деле Общая теория относительности подтверждает механику Ньютона. Ее математическое описание опирается на общее с теорией Ньютона положение о том, что все тела в заданной точке приобретают одно и то же ускорение, вызванное силой притяжения. Это означает, что можно избавиться от воздействия сил тяготения в любой точке, использовав систему отсчета, известную как инерциальная, которая испытывает то же самое ускорение. Например, мы не почувствуем воздействие земного притяжения в свободно падающем лифте. В этих инерциальных системах отсчета законы Ньютона справедливы по крайней мере для тел, скорость которых не приближается к скорости света.
Успех ньютоновской трактовки движения планет и комет показывает, что инерциальными системами отсчета для Солнечной системы являются те, в которых Солнце, а не Земля, находится в состоянии покоя (или движется с постоянной скоростью). Именно в этой системе координат, в соответствии с Общей теорией относительности, далекие галактики не вращаются вокруг Солнечной системы. В этом смысле теория Ньютона составила прочное основание для того, чтобы предпочесть теорию Коперника теории Тихо Браге. Но Общая теория относительности позволяет нам использовать любую систему отсчета, которая нам нравится, а не только инерциальные системы отсчета. Если мы используем систему отсчета, как у Тихо, где Земля находится в состоянии покоя, тогда будет казаться, что галактики описывают вокруг Земли круги с периодичностью раз в год, и в рамках Общей теории относительности это грандиозное движение создало бы силы сродни притяжению, которые действовали бы на Солнце и планеты и заставили бы их двигаться именно так, как предполагал в своей теории Браге. Кажется, Ньютон размышлял и об этом. В неопубликованном Предложении 43, которое не вошло в «Начала», Ньютон отмечает, что теория Тихо могла бы быть верной, если бы какие-то другие силы, кроме обычной силы тяготения, воздействовали на Солнце и планеты{279}.
Когда в 1919 г. теория Эйнштейна была подтверждена наблюдением предсказанного ею искривления лучей света под воздействием гравитационного поля Солнца, лондонская Times заявила, что Ньютон не прав. Но это заявление было ошибочным. Теорию Ньютона можно рассматривать как упрощенный вариант теории Эйнштейна; она сохраняет точность, когда речь идет об объектах, двигающихся со скоростью намного ниже скорости света. Теория Эйнштейна не только не опровергает теорию Ньютона, она объясняет, почему теория Ньютона работает в тех случаях, когда она работает. Сама Общая теория относительности, без сомнений, является упрощенной версией какой-то всеобъемлющей теории.