Курс на Марс. Самый реалистичный проект полета к Красной планете - Роберт Зубрин
Шрифт:
Интервал:
Закладка:
Следует отметить, что Марс – единственное известное нам небесное тело, где колонисты смогут жить на поверхности, а не в туннелях и свободно передвигаться и выращивать урожай при свете дня. Марс – это место, где люди могут жить, заводить детей, увеличивая численность колонии, и обеспечивать себя всем необходимым благодаря местным ресурсам. То есть Марс – это место, где может появиться настоящая человеческая цивилизация, а не старательский или научный форпост. И, что немаловажно для межпланетной торговли, Марс и Земля – единственные места в Солнечной системе, где люди могут выращивать сельскохозяйственные культуры на экспорт.
Марс является лучшим объектом для колонизации в Солнечной системе, поскольку на сегодняшний день он имеет наибольший потенциал для самообеспечения. Тем не менее, даже если роботизированные технологии производства будут развиваться очень быстрыми темпами, Марс станет полностью самодостаточным только тогда, когда численность его популяции будет исчисляться в миллионах. Таким образом, потребность в импорте специализированных промышленных товаров с Земли на Марс останется на ближайшие столетия. Эти товары могут иметь сравнительно небольшую массу, так как действительно сложными в изготовлении будут только небольшие детали даже самых высокотехнологичных товаров. Тем не менее за эти небольшие замысловатые предметы нужно платить, и высокие затраты на запуск с Земли и межпланетный перелет значительно увеличат их цену. Что же Марс может экспортировать на Землю в ответ?
Именно этот вопрос заставил многих думать, что колонизация Марса трудновыполнима или по крайней мере уступает по выполнимости колонизации Луны. Например, много раз говорилось о том, что на Луне есть запасы гелия-3, изотопа, не найденного на Земле, который может иметь очень большое значение как топливо для термоядерных реакторов второго поколения. На Марсе нет запасов гелия-3. С другой стороны, из-за сложной геологической истории Марса на нем может присутствовать концентрированная минеральная руда с гораздо большим содержанием драгоценных металлов, чем в настоящее время обнаруживается на Земле, – потому что земные руды сильно истощены человеком за последние пять тысяч лет. В совместной статье с Дэвидом Бейкером в 1990 году я показал, что, если на Марсе доступны концентрированные запасы металлов, не менее ценных, чем серебро (то есть само серебро, германий, гафний, лантан, церий, рений, самарий, галлий, гадолиний, золото, палладий, иридий, рубидий, платина, родий, европий, а также множество других), их потенциально можно будет транспортировать на Землю со значительной выгодой [44]. Многоразовое транспортное средство с одноступенчатым двигателем, предназначенное для старта с поверхности Марса, такое как ЯРМТ (о нем рассказывается в главе 7), могло бы перевозить грузы на орбиту Марса для транспортировки на Землю с помощью любых недорогих одноразовых химических двигательных ступеней, изготовленных на Марсе, или многоразовых челночных солнечных межпланетных кораблей, или межпланетных кораблей с магнитными парусами (эти передовые двигательные системы рассматриваются в дополнительном разделе в конце этой главы). Существование таких драгоценных металлических руд, однако, по-прежнему остается под вопросом.
Но есть один промышленный ресурс, который точно существует на Марсе повсеместно в больших количествах, – дейтерий, тяжелый изотоп водорода. На Земле на каждый миллион атомов водорода приходится 166 атомов дейтерия, а на Марсе – 833. Дейтерий – не только ключевое топливо для термоядерных реакторов первого и второго поколений, но и важный ресурс для современной атомной энергетики. Если у вас есть достаточное количество дейтерия, вы можете замедлить ядерный реактор «тяжелой» водой вместо обыкновенной «легкой», и такой реактор будет работать на природном уране, не требующем обогащения. Ядерные реакторы канадского производства, известные как CANDU, сегодня работают по этому принципу. Проблема, однако, заключается в том, что придется подвергнуть электролизу 30 тонн обычной «легкой» воды, чтобы получить достаточное количество водорода для производства одного килограмма дейтерия, и пока не будут доступны очень большие количества дешевой гидроэлектрической энергии, процесс останется непозволительно дорогим. (Именно поэтому во время Второй мировой войны для проекта немецкой атомной бомбы пришлось располагать производство тяжелой воды рядом с большой норвежской плотиной ГЭС в Веморке. Когда отряд норвежского сопротивления и «Би-17» Соединенных Штатов разрушили это место в серии налетов в 1943 году, немецкая ядерная программа фактически была уничтожена.) Даже с дешевой электроэнергией дейтерий остается очень дорогим, его текущая рыночная стоимость на Земле составляет около 10000 долларов за килограмм, что примерно в 12 раз дороже, чем серебро (27 долларов за унцию), на 25 % дороже золота (1200 долларов за унцию). И это сегодня, пока мы стоим еще только на пороге появления промышленного термоядерного синтеза. После того как термоядерные реакторы начнут широко использоваться, цены на дейтерий будут расти. Как уже говорилось в предыдущих главах, большая часть энергии на марсианской базе пойдет на электролиз воды, чтобы поддерживать различные процессы жизнеобеспечения и химического синтеза. Если этап выделения дейтерия применять к водороду, полученному путем электролиза, до того как он возвращается обратно в химические реакторы, тогда каждые 6 тонн марсианской электролизированной воды могут обеспечить около одного килограмма дейтерия в качестве побочного продукта. Каждому человеку на Марсе потребуется около 10 тонн электролизированной воды в земной год. Если для технических целей электролизированной воды необходимо в два раза больше, в общей сложности для марсианской колонии на 200 000 человек ее потребуется 6 миллионов тонн в год. Это позволит производить в год 1000 тонн дейтерия, чего достаточно для получения 11 тераватт электроэнергии – примерно столько же, сколько все человечество потребляет сегодня. При современных ценах на дейтерий это могло бы приносить годовой экспортный доход в 10 миллиардов долларов.(Например, Новая Зеландия получила 26 миллиардов долларов валового экспорта в 2009 году, хотя население страны составляет всего 4,3 миллиона человек.) При современной средней стоимости электроэнергии в 7 центов/кВт. ч общая стоимость энергии, производимой на Земле, в результате составит около 7 триллионов долларов в год.
Идеи могут стать еще одним экспортным товаром для марсианских колонистов. Точно так же, как огромный дефицит рабочей силы в колониальной Америке XIX века привел к появлению «изобретательности янки», крайняя нехватка рабочей силы в сочетании с технологической культурой поможет развить марсианскую изобретательность. Благодаря этому будут множиться изобретения в сферах энергетики, автоматизации и робототехники, биотехнологий, а также многих других. Марсианские изобретения, лицензированные на Земле, позволят финансировать Красную планету, а также радикально повысить уровень земной жизни – так в XIX веке американские изобретения изменили Европу и в конечном итоге остальной мир.
Изобретения новой цивилизации, появляющиеся в силу необходимости, могут сделать Марс богатым, но есть и другие способы. Один из них – торговля полезными ископаемыми, которые можно добывать в поясе астероидов, лежащем между орбитами Марса и Юпитера.