Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд
Шрифт:
Интервал:
Закладка:
Пространство Калаби – Яу намного более сложно, чем круглое сечение цилиндра, но принцип остаётся тем же: размер и форма компактифицированного пространства может варьироваться в зависимости от положения в пространстве, как если бы у нас были сотни скалярных полей, управляющих Законами Физики! Теперь мы начинаем понимать, почему настолько сложен ландшафт теории струн.
Реальные принципы, лежащие в основе теории струн, окутаны большой тайной. Почти всё, что мы знаем о теории, включает в себя особую часть ландшафта, где математика удивительно упрощается благодаря свойству, называемому суперсимметрией. Суперсимметричные области ландшафта образуют идеально плоскую равнину, располагающуюся на высоте, в точности равной нулю, со свойствами, настолько симметричными, что многие вещи могут быть вычислены без информации обо всём ландшафте. Если кто-то искал простоту и элегантность, то плоская равнина суперсимметричной теории струн, известной также как теория суперструн, является именно тем местом, на которое им стоит обратить внимание. В самом деле, пару лет назад это место было единственным, на которое обращали внимание струнные теоретики. Но кое-кто из физиков уже стряхнул с себя чарующее наваждение и пытается избавиться от элегантных упрощений супермира. Причина проста: реальный мир не суперсимметричен.
Мир, содержащий Стандартную модель и малую ненулевую космологическую постоянную, не может находиться на плоскости нулевой высоты. Он лежит где-то в неровном районе Ландшафта с холмами, долинами, высокими плато и крутыми склонами. Но есть основания считать, что наша долина близка к суперсимметричной части Ландшафта и что какие-то остатки математического суперчуда могли бы помочь нам понять особенности эмпирического мира. Одним из примеров, который мы разберём в этом разделе, является масса бозона Хиггса. Фактически все открытия, благодаря которым появилась на свет эта книга, представляют собой первые робкие попытки отойти от безопасной суперсимметричной равнины.
Суперсимметрия говорит нам о различиях и сходствах бозонов и фермионов. Как многое другое в современной физике, принципы суперсимметрии прослеживаются вплоть до первых работ Эйнштейна. В 2005 год мы отметили столетие «anno mirabilis» – года чудес современной физики. Эйнштейн начал в этом году две революции и завершил третью.[78] Безусловно, это был год специальной теории относительности. Но мало кто знает, что 1905 год был гораздо больше чем «годом относительности». Он также ознаменовал рождение фотонов, начало современной квантовой механики.
Эйнштейн получил только одну Нобелевскую премию по физике, хотя я думаю, что каждая Нобелевская премия, вручаемая после 1905 года, несла в себе отголоски открытий Эйнштейна. Нобелевская премия была присуждена Эйнштейну не за создание теории относительности, а за объяснение фотоэффекта. Именно теория фотоэффекта была наиболее радикальным вкладом Эйнштейна в физику, где он впервые ввёл понятие фотонов, квантов энергии, из которых состоит свет. Физика была уже готова разродиться специальной теорией относительности, её создание было лишь вопросом времени, в то время как фотонная теория света прогремела как гром среди ясного неба. Эйнштейн показал, что луч света, обычно представляемый как волновое явление, имеет дискретную структуру. Если свет имеет определённый цвет (длину волны), то все фотоны как бы маршируют в ногу: каждый фотон идентичен любому другому. Частицы, которые могут одновременно находиться в одном и том же квантовом состоянии, называются бозонами в честь индийского физика Шатьендраната Бозэ.
Почти двадцать лет спустя, завершая здание, заложенное Эйнштейном, Луи де Бройль покажет, что электроны, всегда воспринимаемые как частицы, ведут себя в то же самое время и как волны. Подобно волнам электроны способны отражаться, преломляться, дифрагировать и интерферировать. Но есть фундаментальное различие между электронами и фотонами: в отличие от фотонов два электрона не могут одновременно находиться в одном и том же квантовом состоянии. Принцип запрета Паули гарантирует, что каждый электрон в атоме имеет своё собственное квантовое состояние и что ни один другой электрон не может сунуть свой нос на уже занятое место. Даже вне атома два идентичных электрона не могут находиться в одном и том же месте или иметь один и тот же импульс. Частицы этого рода называются фермионами по имени итальянского физика Энрико Ферми, хотя по справедливости они должны называться паулионами. Из всех частиц Стандартной модели около половины являются фермионами (электроны, нейтрино и кварки), а другая половина представлена бозонами (фотоны, Z и W-бозоны, глюоны и бозон Хиггса).
Фермионы и бозоны играют разные роли в картине мира. Обычно мы представляем материю состоящей из атомов, то есть из электронов и ядер. В первом приближении ядра состоят из протонов и нейтронов, удерживаемых вместе ядерными силами, но на более глубоком уровне протоны и нейтроны оказываются собранными из небольших строительных блоков – кварков. Все эти частицы – электроны, протоны, нейтроны и кварки – являются фермионами. Материя состоит из фермионов. Но без бозонов атомы, ядра, протоны и нейтроны просто развалятся. Эти бозоны, в первую очередь фотоны и глюоны, прыгая взад-вперёд между фермионами, создают силы притяжения, удерживающие всё вместе. Хотя фермионы и бозоны критически важны для того, чтобы мир был таким, каков он есть, они всегда считались «животными разной породы».
Но примерно в начале 1970-х вдохновлённые первыми успехами теории струн теоретики начали играться с новыми математическими идеями, согласно которым фермионы и бозоны на самом деле не настолько различны. Одна из идей состояла в том, что все частицы образуют идеальные пары идентичных близнецов, одинаковых во всех отношениях, за исключением того, что один из них является фермионом, а другой – бозоном. Это была совершенно дикая гипотеза. Её справедливость для реального мира означала бы, что физики умудрились каким-то образом потерять половину всех элементарных частиц, не сумев обнаружить их в своих лабораториях. Например, согласно этой гипотезе, должна существовать частица с точно такой же массой, зарядом и прочими свойствами, как у электрона, только являющаяся не фермионом, а бозоном. Как можно было не заметить такую частицу на ускорителях Стэнфорда или ЦЕРНа? Суперсимметрия предполагает существование у фотона безмассового нейтрального близнеца-фермиона, а также близнецов-бозонов у электронов и кварков. То есть гипотеза предсказывала целый мир таинственно пропавших без вести «противоположностей». На самом деле вся эта работа была лишь математической игрой, чисто теоретическими исследованиями нового вида симметрии – мира, которого нет, но который мог бы существовать.
Идентичных частиц-близнецов не существует. Физики не лажанулись и не проворонили целый параллельный мир. Какой же интерес в таком случае представляет эта математическая спекуляция и почему этот интерес вдруг усилился за последние 30 лет? Физиков всегда интересовали всевозможные математические симметрии, даже если единственный разумный вопрос, который можно было при этом задать: «Почему этой симметрии нет в природе?» Но и реальный мир, и его физическое описание полны разнообразных симметрий. Симметрия является одним из наиболее дальнобойных и мощных орудий в арсенале теоретической физики. Она пронизывает все разделы современной физики, и особенно те, которые связаны с квантовой механикой. Во многих случаях тип симметрии – это всё, что мы знаем о физической системе, но анализ симметрии является настолько мощным методом, что зачастую сообщает нам почти всё, что мы хотим знать. Симметрии нередко являются тем садом, в котором физики находят эстетическое удовлетворение от своих теорий. Но что такое симметрии?