Хлопок одной ладонью - Николай Кукушкин
Шрифт:
Интервал:
Закладка:
Синапс может быть любой силы. Но потенциал действия всегда одинаковый. Каждое синаптическое соединение между двумя нейронами может усиливаться или ослабляться, что соответствует большему или меньшему количеству натрия, запускаемого в клетку B «выстрелом» из клетки A. Достигаться такие изменения могут разными способами. Например, клетка А может регулировать количество нейромедиатора, содержащегося в каждом «выстреле». Клетка B, в свою очередь, может менять на «принимающей» мембране количество белков-рецепторов, «мишеней» нейромедиатора, и тем самым тоже влиять на силу сигнала, передаваемого через отдельно взятый синапс. В общем, каждый нейрон получает с разных сторон сигналы разной силы. Но стоит всем разнообразным сигналам достичь в совокупности нужного порога, как их сминает одной и той же лавиной потенциала действия. Этот одинаковый потенциал действия – одинаковая команда к выбросу всех заготовленных нейромедиаторов из всех окончаний. Это одна и та же команда «Пли!», которая одновременно достигает всех имеющихся в нейроне «пушек» независимо от того, сколько в них «зяряда». Нейрон не может сначала выбросить немножко нейромедиатора из одной половины своих окончаний, а потом еще чуть-чуть из другой половины. Он либо молчит, либо выстреливает всем, что заряжено, изо всех окончаний.
У человека каждый нейрон постоянно получает сигналы от тысяч других нейронов. Все эти тысячи сигналов разной силы складываются, и при достижении определенного порога по всему нейрону раздается команда «Пли!». Входящие соединения как бы «голосуют» за потенциал действия, причем в зависимости от силы каждого синапса меняется его вклад в общее решение. Потенциал-зависимые натриевые каналы решают исход голосования: это они определяют порог, при котором тишина превращается в выстрел. То есть смысл потенциала действия – это превращение массы аналоговых сигналов в единый дискретный, или цифровой, сигнал.
КСТАТИ
Электрические сигналы в клетках хороши тем, что за ними относительно легко наблюдать в реальном времени: нужно просто проткнуть мембрану тонким электродом. В исследованиях, проводимых в нашей лаборатории, этому особенно способствуют крупные размеры нейронов аплизии (их видно невооруженным глазом). Колебания заряда под мембраной записываются в виде графика, напоминающего кардиограмму, но параллельно выводятся на динамик и превращаются в звуковую волну. Это сложно объяснить, но с динамиком работать проще, чем в тишине, – опытный электрофизиолог может на слух отличить здоровый нейрон от неправильно шумящего.
Активные нейроны обычно стреляют не одиночными потенциалами действия, а целыми очередями – весь цикл «нейромедиатор – потенциал действия – нейромедиатор» занимает миллисекунды, так что клетка быстро «перезаряжается» и стреляет снова, если ее продолжать стимулировать. Каждый потенциал действия на экране выглядит как большой острый пик: он резко взлетает вверх и резко падает вниз, из-за чего потенциалы действия еще называют «спайками», то есть «шипами». Но звучит потенциал действия как низкий, глухой удар, напоминающий удар бас-барабана. Чем активнее нейрон, тем быстрее он грохочет своим карданным валом. Со временем разные частоты и даже тембры ударов начинают казаться голосами – то ленивыми, то энергичными, то хлипкими и болезненными, то уверенными и возмущенными. Как и у любого отдельно взятого животного, у любого отдельно взятого нейрона свой характер.
В чем смысл нейрона? Если бы он был проводом, то синапсы вообще были бы не нужны. Собственно, в нервах их и нет. Нервы – это как раз высокоскоростные трассы передачи сигнала, и состоят они из очень длинных отростков одних и тех же клеток, не прерывающихся синапсами и нейромедиаторами. В одном и том же нерве могут быть сведены отростки тысяч клеток, но сигнал по ним бежит всегда в пределах клетки, а не между ними. Такие отростки достигают огромной длины: например, у нейронов седалищного нерва, живущих в спинном мозге, они должны дорастать аж до кончиков пальцев на ноге.
Но основную часть мозга составляют не нервы, а сети нейронов, соединенных астрономическим количеством синапсов, причем синапсов именно химических, «прерывистых», а не электрических, по которым сигнал может бежать без остановки. Задача типичного нейрона – не просто провести сигнал. Его главная функция – обобщение. Каждый нейрон принимает тысячу разнообразных входящих соединений, а сам отправляет одно и тот же сообщение по тысяче исходящих каналов. Каждое отдельно взятое соединение и каждое отдельно взятое сообщение значат мало, но их совокупность, их частота, их сила, иными словами, их паттерн порождает нечто, к чему не сводится ни одно из них. Смысл нейрона – в эмерджентности информации на выходе по отношению к информации на входе.
Нейроны передают информацию по цепи одной и той же азбукой Морзе, состоящей из потенциалов действия, «стреляющих» с разной частотой. Но с продвижением по цепи синапсов эта информация меняет значение. Каждый следующий нейрон отражает очередью своих выстрелов все более и более сложные закономерности. Информация, которую он несет, становится более общей, более отрешенной от деталей, более абстрактной. В этой абстракции и заключается смысл нейрона, а как мы увидим в дальнейшем, и всего мозга. Любое действие, любой рефлекс, любая мысль сводятся к обобщению.
Обобщение как базовая математическая операция сближает нашу нервную систему с цифровым компьютером19. Похожую функцию, только сильно упрощенную, в процессорах исполняют транзисторы – микроскопические детали микрочипа, которых там десятки миллионов на квадратный миллиметр. Типичный транзистор получает два входящих сигнала, а дальше по цепи отправляет один исходящий, совершая тем самым элементарную операцию обобщения. К этой операции сводятся любые, даже самые сложные вычисления, производимые компьютерами. Но у нейронов, помимо способности обобщать, есть еще одно свойство, которого у транзисторов нет: они хранят в себе память о прошлом.
Иллюзия прошлого
Один из эпизодов телесериала «Черное зеркало» вертится вокруг технологии, позволяющей копаться в памяти другого человека и даже выводить сцены из его прошлого на экран специального телевизора. Героиня эпизода, страховой агент, пользуется таким устройством для расследования несчастного случая и случайно натыкается в воспоминаниях второй героини на нечто ужасное. Это ужасное проецируется из головы второй героини на экран телевизора в виде мутного видеоролика, и страховой агент видит то, что не должна была увидеть. Следует драма.
Мы представляем себе собственную память как память компьютера. Память можно скачать и закачать, ее можно скопировать, удалить, вывести на экран. Мы смотрим на память как на вещь, которая лежит в конкретном месте и которую можно из этого места взять и переложить в другое место. Даже если мы знаем, что файл на экране компьютера – это его виртуальная иконка, мы все равно понимаем, что где-то на жестком диске есть место, на которое можно указать и сказать: «Вот этот файл». Этот файл не изменится в зависимости от того, на каком устройстве его открывать. Он существует сам по себе. Так мы представляем и собственные воспоминания. Лучше всего это отражено в научной фантастике: помимо «Черного зеркала», можно, например, вспомнить, замечательный киберпанк-боевик 1995 г. «Джонни-мнемоник» по одноименному рассказу Уильяма Гибсона, в котором герой Киану Ривза выступает в качестве живой флешки (весь сюжет основан на том, что у Джонни-мнемоника в голове умещается 80 гигабайт информации, а ему – о ужас! – пытаются туда закачать 320 гигабайт. По современным меркам все это смешные объемы, умещающиеся на USB-накопителе размером с монету). Подобное представление о памяти встречается и в фэнтези: в «Гарри Поттере», например, есть магический артефакт «Омут памяти», в котором можно сохранять сокровенные воспоминания для дальнейшего просмотра любопытными школьниками.