Значимые фигуры - Йен Стюарт
Шрифт:
Интервал:
Закладка:
После получения докторской степени Пуанкаре получил место младшего преподавателя математики в Университете Кана, где встретил свою будущую жену Луизу Пулен д’Андеси. Они поженились в 1881 г. и родили четверых детей – трех девочек и мальчика. К 1881 г. Пуанкаре успел получить куда более престижную работу в Университете Парижа, где за короткое время вырос в одного из ведущих математиков своего времени. Пуанкаре обладал прекрасной интуицией, и лучшие идеи, как правило, приходили к нему в те моменты, когда он думал о чем-то другом, – вспомните хотя бы историю с омнибусом. Он написал несколько научно-популярных бестселлеров: «Наука и гипотеза» (1901 г.), «Ценность науки» (1905 г.), «Наука и метод» (1908 г.). Безусловно, Пуанкаре стоял выше большинства других математиков того времени во многих областях, включая теорию комплексных функций, дифференциальные уравнения, неевклидову геометрию, топологию – которую он, по существу, основал, – и в применении математики в таких разных областях, как электричество, упругость, оптика, термодинамика, теория относительности, квантовая теория, небесная механика и космология.
* * *
Топология, если вы помните, – это «геометрия резинового листа». Евклидова геометрия строится вокруг свойств, которые сохраняются при жестких перемещениях, таких как длины, углы и площади. Топология отбрасывает все это и ищет свойства, которые, напротив, сохраняются при непрерывных преобразованиях, таких как сгибание, растягивание, сжатие и закручивание. К таким свойствам относятся связность (один кусок или два), наличие узлов и число отверстий (одно или больше). Предмет изучения здесь может показаться туманным, но свойства непрерывности фундаментальны – возможно, даже более фундаментальны, чем свойства симметрии. В XX в. топология наряду с алгеброй и анализом стала одним из трех китов теоретической математики.
В том, что так произошло, большая заслуга Пуанкаре, который перешел от резиновых листов к, если так можно выразиться, резиновым пространствам. Метафора листа – двумерная концепция. Если игнорировать все окружающее пространство – как видел его Гаусс, – то для определения точки на листе или, более формально, на поверхности, достаточно двух чисел. Классические топологи, и среди них ученик Гаусса Иоганн Листинг, сумели достаточно подробно разобраться в топологии поверхностей. В частности, они их проклассифицировали, то есть расписали все возможные формы поверхностей, воспользовавшись для этого хитроумным методом конструирования поверхности из плоского многоугольника (и его внутренней части).
![Значимые фигуры Значимые фигуры](https://pbnuaffirst.storageourfiles.com/s18/98082/img/i_035.jpg)
Если попарно склеить противоположные стороны квадрата, получится тор. Но результат можно представить себе и исследовать, используя только начальный квадрат и правила склеивания и ничего на самом деле не сгибая.
Простой и очень важный пример поверхности – тор. В трехмерном пространстве тор имеет форму бублика с непременным отверстием посередине. Математический тор определяется как поверхность этого бублика – никакого теста внутри, одна только граница с окружающим воздухом. Концептуально эту фигуру можно определить без всякого теста и воздуха. Достаточно взять квадрат и добавить к нему правила, по которым соответствующие точки на противоположных сторонах квадрата тождественны. Если бы вы согнули квадрат и реально склеили противоположные его стороны, вы действительно получили бы поверхность тора. Но можно исследовать все и на плоском квадрате – конечно, если не забывать о правилах. Многие компьютерные игры «загибают» прямоугольный экран, графически используя правила склеивания, так что инопланетные монстры, уходящие за левый край экрана, тут же вновь появляются справа. Никто в здравом уме не будет физически сгибать экран, чтобы получить этот эффект. Этот объект известен в математике под названием, которое явственно отдает оксюмороном, – «плоский тор». Плоский он потому, что его локальная геометрия совпадает с локальной геометрией плоского квадрата. А тор – потому, что его глобальная топология представляет собой топологию… тора.
Иоганн Листинг и другие топологи показали, что любая замкнутая поверхность конечных размеров может быть получена концептуальным склеиванием сторон подходящего многоугольника. Обычно такой многоугольник имеет больше четырех сторон, а правила склеивания могут быть довольно сложными. Исходя из этого, можно доказать, что любая ориентируемая – то есть имеющая две различные стороны, в отличие от знаменитой ленты Мёбиуса, – поверхность представляет собой k-тор, или тор k-го рода. Это поверхность, подобная тору, но с k отверстиями, где k = 0, 1, 2, 3, … Если k = 0, мы получаем сферу, если k = 1, получаем обычный тор, если k ≥ 2, получаем нечто более сложное. Аналогичная классификация существует и для неориентируемых поверхностей, но мы не будем вдаваться в подробности.
![Значимые фигуры Значимые фигуры](https://pbnuaffirst.storageourfiles.com/s18/98082/img/i_036.jpg)
Тор-2 и тор-3
Пуанкаре хотел обобщить топологию и распространить ее на пространства размерностей больших, чем два, и очевидным первым шагом в этом направлении был переход к трем измерениям. Здесь принципиальное значение имеет Гауссов объективный взгляд на геометрию; дело в том, что мало смысла в попытках встроить сложное топологическое пространство в обычное трехмерное Евклидово пространство. Это как встраивать тор в плоскость, причем без фокуса с отождествлением сторон. Не получится.
Чтобы понять, что интересные трехмерные топологические пространства – трехмерные многообразия – возможны, мы обобщим прием, которым пользовался еще Листинг. К примеру, чтобы получить плоский трехмерный тор, берут объемный куб (чтобы получить что-то трехмерное, требуется внутренность куба, а не только шесть его квадратных граней) и концептуально склеивают попарно (отождествляют) противоположные грани. Теперь объемный инопланетянин может выйти через одну грань и тут же вновь появиться с противоположной стороны, как если бы эти две грани были двумя сторонами некоего портала в стиле «Звездных врат» и инопланетянин просто проходил бы сквозь этот портал.
В обобщенном смысле мы можем взять многогранник и склеить его грани в соответствии с некоторым набором правил. Этот рецепт позволяет получить множество трехмерных многообразий различных топологий, но таким способом уже невозможно получить их все. (Неочевидно, но это правда.) Мало того, классифицировать топологические типы многообразий с тремя и более измерениями принципиально невозможно; фигур с разной топологией существует слишком много. Но, приложив достаточные усилия, можно выделить кое-какие общие закономерности. В этой связи Пуанкаре принадлежит фундаментальный вопрос, известный как гипотеза Пуанкаре, которую на самом деле, как мы вскоре увидим, лучше было бы назвать ошибкой Пуанкаре, но будем милосердны. В 1904 г. Пуанкаре обнаружил, что некий факт, который он все время неявно полагал очевидным, не был даже верным, и задался вопросом, нельзя ли исправить ситуацию, начав с более сильной гипотезы. Сам он не смог в этом разобраться, лишь заметил, что «этот вопрос увел бы нас слишком далеко в сторону», и оставил головоломку будущим поколениям.