Эволюция человека. Книга 3. Кости, гены и культура - Елена Наймарк
Шрифт:
Интервал:
Закладка:
Например, уже в 2011 году было проведено исследование (Abi-Rached et al., 2011), касающееся главного комплекса гистосовместимости (ГКГ). Гены ГКГ класса I играют у позвоночных ключевую роль в борьбе с вирусными инфекциями, а также с переродившимися клетками собственного организма. У человека этих генов три, называются они HLA-A, HLA-B и HLA-C и располагаются все вместе, единым кластером, на шестой хромосоме.
Чтобы стала понятнее суть исследования, скажем два слова о биологии белков ГКГ. Они необходимы для того, чтобы специализированные клетки иммунной системы – T-лимфоциты и NK-лимфоциты – могли своевременно распознать присутствие в клетках организма чужеродных белков, например вирусных. Все белки, имеющиеся в клетке, рано или поздно отправляются на переработку: специальные молекулярные “мясорубки” – протеасомы – режут их на короткие фрагменты. Некоторые из этих фрагментов – пептиды длиной по 8-10 аминокислот – присоединяются к белкам ГКГ и вместе с ними мигрируют на поверхность клетки. Сидящие на поверхности клетки комплексы из белков ГКГ и прикрепленных к ним коротких пептидов представляют собой что-то вроде биохимического паспорта клетки. Лимфоциты “ощупывают” их своими рецепторами, и если будет замечен чужеродный пептид, клетка может быть атакована и уничтожена.
Каждый белок ГКГ может прикрепить к себе не любой пептид из 8-10 аминокислот, а только принадлежащий к определенному классу, то есть с определенными аминокислотами в нескольких ключевых позициях. Поэтому от набора генов ГКГ зависит, от каких вирусов организм будет хорошо защищен, а от каких – не очень: если есть белок ГКГ со сродством к аминокислотной последовательности конкретного вируса, то защита сработает, а если нет, то увы. Поскольку вирусов много и они быстро эволюционируют, гены ГКГ находятся под действием так называемого балансирующего отбора, поддерживающего высокий уровень генетического полиморфизма[25]. И действительно, гены ГКГ класса I чрезвычайно полиморфны: каждый из них присутствует в генофонде в виде сотен вариантов (аллелей). Хотя у отдельно взятого человека в геноме может быть, конечно, только по два аллеля каждого из трех генов.
Не исключено, что полиморфизм генов ГКГ дополнительно поддерживается половым отбором, поскольку многие позвоночные выбирают партнеров на основе индивидуального запаха, который во многом определяется набором пептидов ГКГ, причем предпочтение часто отдается запаху, несхожему со своим собственным[26]. Такой алгоритм выбора партнера дает преимущество редким аллелям ГКГ, и в том же направлении действует отбор, осуществляемый эпидемиями вирусных заболеваний.
Логично предположить, что среди неандертальских и денисовских генов, попавших в генофонд внеафриканских сапиенсов, нашим предкам могли особенно пригодиться какие-то аллели ГКГ. Ведь вышедшие из Африки сапиенсы наверняка были хуже приспособлены к местным инфекциям, чем коренные обитатели Евразии, поэтому такое заимствование могло оказаться для них полезным.
Чтобы проверить эту гипотезу, ученые сопоставили набор аллелей генов HLA-A, HLA-B и HLA-С у трех неандертальцев из пещеры Виндия в Хорватии (у всех них, кстати, набор аллелей ГКГ класса I оказался одинаковым, что свидетельствует об очень близком родстве) и у девочки из Денисовой пещеры с разнообразием аллелей этих генов у нынешнего человечества.
Почти все аллели ГКГ класса I, обнаруженные у неандертальцев и денисовской девочки, встречаются в генофонде современного человечества, причем многие из них распространены исключительно за пределами Тропической и Южной Африки. Это согласуется с гипотезой о том, что такие аллели были заимствованы нашими предками у неандертальцев и денисовцев – иначе трудно объяснить, почему их нет у коренных африканцев. Есть и другие статистические аргументы в пользу заимствования.
Некоторые аллели ГКГ, предположительно заимствованные внеафриканскими сапиенсами у денисовцев и неандертальцев, оказались полезными и были поддержаны отбором. Это видно по высокой частоте их встречаемости. Так, суммарная частота встречаемости всех предположительно заимствованных аллелей HLA-A кое-где в Восточной Азии превышает 60 %, а в горных районах Новой Гвинеи приближается к 100 %. Один из широко распространенных заимствованных аллелей (он называется HLA-A*11) обеспечивает эффективную защиту от вируса Эпштейна – Барр. В чем состоит специфика остальных неандертальских и денисовских аллелей, пока не известно.
В 2014 году команда генетиков из двадцати научных лабораторий пяти стран под руководством Расмуса Нильсена из Калифорнийского университета в Беркли изучила еще один яркий пример удачного (поддержанного отбором) заимствования чужого аллеля предками современных людей (Nielsen et al., 2014). Мы уже упоминали об этой истории в главе 4, в разделе “Денисовцы жили в Тибете 160 тысяч лет назад”, посвященном тибетскому денисовцу. Да, речь идет о гене EPAS1. Этот ген кодирует транскрипционный фактор, который помогает людям адаптироваться к пониженному уровню кислорода. Он регулирует давление в сосудах, а также развитие и работу сердечной мышцы.
Исследование показало, что у современных тибетцев распространены особые аллели этого гена, которые увеличивают количество гемоглобина в эритроцитах. Число эритроцитов остается при этом прежним. Носители “тибетских” вариантов имеют повышенный уровень гемоглобина, где бы они ни жили. Для этих аллелей характерен ряд специфических нуклеотидных замен в гене EPAS1. Ясно, что тибетские варианты распространились под действием отбора как приспособление к высокогорным условиям. Другой путь адаптации к нехватке кислорода – увеличение числа самих эритроцитов – чреват осложнениями, так как при этом возрастает риск тромбозов.