От атомов к древу. Введение в современную науку о жизни - Сергей Ястребов
Шрифт:
Интервал:
Закладка:
Мы видим, что кроме ДНК-полимераз в репликации участвуют белки, раскручивающие ДНК и удерживающие ее в раскрученном состоянии, создающие затравку для новой цепи, и другие — в общей сложности несколько десятков белков. Очевидно, что в таком сложном, многоступенчатом, затратном процессе не может не быть ошибок. Собственно говоря, ошибки и так неизбежны в любом процессе копирования информации — просто из-за случайного характера движения молекул. Но чем больше этапов и состыковок, тем больше возможностей сделать что-то неточно. И действительно, процесс репликации ДНК всегда включает некоторую вполне заметную долю ошибок, которая отличается у разных живых организмов, но никогда не равняется нулю. Часть этих ошибок тут же исправляется (репарация), а часть сохраняется и передается следующим поколениям (конвариантная редупликация). Наличие конвариантной редупликации — это важнейшее свойство всех живых систем, отличающее их от всех неживых.
Тут не помешает историческая справка. Термин “конвариантная редупликация” придумал выдающийся генетик Николай Владимирович Тимофеев-Ресовский, и означает он самокопирование информационных молекул с сохранением случайно возникающих изменений. А еще это означает, что сейчас мы наконец добрались до самого смыслового ядра современной биологии. The very heart, как говорят англичане. Ведь биология — это, по сути, и есть наука о поведении конвариантно редуплицирующихся структур и их всевозможных надстроек. Именно благодаря конвариантной редупликации происходит биологическая эволюция. Более того, для любой конвариантно редуплицирующейся структуры эволюция физически неизбежна просто потому, что точность копирования информации никогда не бывает абсолютной и изменения накапливаются из поколения в поколение.
В современных научных и научно-популярных книгах молекулы, способные к самокопированию, принято называть репликаторами. Любой ген — это типичный репликатор. Он потому и существует, что способен создавать собственные копии, а вернее — побуждать организмы к созданию таких копий. От этих соображений остается один шаг до современной эволюционной теории.
На общедоступном языке мы можем назвать ядро администратором клетки. Два главных свойства роднят его с более знакомыми нам администраторами: оно стремится плодить себе подобных и чрезвычайно успешно отражает все наши попытки узнать, чем же именно оно занимается. Только попытавшись обойтись без него, мы можем наконец убедиться, что оно действительно работает.
А сейчас обсудим одну особую группу живых организмов, которая называется эукариотами. Раньше мы уже встречались с этим названием (см. главы 5 и 8). К эукариотам относятся животные, растения, грибы и многие (но не все) одноклеточные существа — такие, как описанные в традиционных школьных учебниках зоологии амебы, эвглены и инфузории. Две другие главные группы клеточных организмов, кроме эукариот, — это бактерии и археи. Причем молекулярные данные показывают, что эукариоты произошли, скорее всего, от архей, а не от бактерий. Архей и бактерий вместе часто называют прокариотами, но надо иметь в виду, что это не название эволюционной ветви, а сборное понятие, образованное методом исключения: вот, мол, есть эукариоты, а есть все прочие.
Самые древние предполагаемые эукариоты, остатки которых удалось найти палеонтологам, имеют возраст 2,2 миллиарда лет[69]. При этом общепризнанный возраст планеты Земля равен 4,6 миллиарда лет, а возраст самых древних предполагаемых следов жизни составляет, по-видимому, 4,1 миллиарда лет (см. главу 16). Первые живые клетки на Земле, несомненно, были прокариотными. И, судя по датам, они оставались такими в течение двух миллиардов лет. Иначе говоря, получается, что на протяжении половины времени своего существования земная жизнь обходилась безо всяких эукариот. В эту эпоху она была чисто прокариотной, то есть бактериальной и архейной.
Если кратко просуммировать основные отличия эукариотной клетки от прокариотной, у нас получится примерно следующий список (см. рис. 10.1):
* большой размер клеток: средний одноклеточный эукариот крупнее среднего одноклеточного прокариота примерно в 10 раз по длине и примерно в 1000 раз по объему;
* ДНК эукариот всегда заключена в клеточное ядро, окруженное оболочкой из двух мембран;
* ДНК эукариот линейна, в отличие от кольцевой ДНК бактерий и архей;
* эукариотная клетка пронизана сложной системой внутренних мембранных полостей и пузырьков (эндоплазматическая сеть, аппарат Гольджи, вакуоли);
* у эукариот есть система внутриклеточных опорно-двигательных образований, называемая цитоскелетом;
* у эукариот широко распространены дополнительные внутриклеточные структуры, окруженные собственными мембранами, — митохондрии (обеспечивают дыхание) и хлоропласты (обеспечивают фотосинтез).
Чтобы познакомиться с эукариотами, мы должны поговорить про эти отличия чуть подробнее.
Начнем с самого общего. В любой эукариотной клетке впридачу к наружной мембране есть внутренняя система взаимосвязанных мембранных полостей и каналов, которая называется эндоплазматической сетью (ЭПС). Основные функции ЭПС, если описать их буквально парой слов, — синтез и транспорт белков, липидов и некоторых других веществ. Принято различать шероховатую и гладкую ЭПС. На шероховатой ЭПС снаружи сидят рибосомы, а на гладкой — нет. Поскольку единственной функцией рибосом является синтез белка, то и связанная с ними шероховатая ЭПС занимается в первую очередь тем, что накапливает и транспортирует белки. У гладкой ЭПС функции другие, более разнообразные.
Благодаря ЭПС и другим мембранным структурам эукариотная клетка, как принято говорить, очень сильно компартментализована. Это означает, что она разделена на ограниченные мембранами отсеки (компартменты), переход веществ между которыми, как правило, возможен только с помощью специальных транспортных белков. Надо сказать, что это куда более фундаментальная особенность, чем может показаться на первый взгляд. Прокариотную клетку, ни на какие отсеки не разделенную, можно в грубом приближении рассматривать как единый мешок с раствором (пусть и вязким). А вот для эукариотной клетки такое приближение не работает в принципе. Внутри прокариотной клетки ДНК, белки и другие молекулы перемещаются из конца в конец путем простой физической диффузии, как в любом сосуде с обычным водным раствором. В эукариотной клетке такое совершенно невозможно: там практически все молекулы вынуждены добираться от места синтеза до “места работы” с помощью сложных транспортных систем, обеспечивающих направленные переходы из отсека в отсек, часто еще и с затратой энергии. Все это означает, что у эукариотной клетки гораздо выше внутренняя упорядоченность, или, говоря научным языком, ниже энтропия. Справедливо замечено, что с точки зрения физики более фундаментальное отличие трудно придумать[70].