Элементы: замечательный сон профессора Менделеева - Аркадий Курамшин
Шрифт:
Интервал:
Закладка:
Первоначальное открытие тулия можно считать случайным. Клеве анализировал несколько образцов оксида эрбия, выделенных из минерала, содержащего преимущественно оксид иттрия, и понял, что разные образцы отличаются по чистоте, поскольку для каждого из них получалась индивидуально «своя» атомная масса эрбия, чего, конечно, не могло быть. Дальнейшая работа по разделению образцов позволила выделить оксиды ещё двух элементов — гольмия и тулия (открытие лантаноидов напоминает игру с матрёшками). Металлический тулий был выделен только в 1914 году.
Какое-то время тулий вполне мог считаться «самым бесполезным химическим элементом» — любая задача, для решения которой он мог применяться, успешнее и дешевле выполнялась другим химическим элементом, про него даже писали: «…самый удивительный факт про тулий в том, что про в этом элементе нет вообще ничего удивительного…». Но все же это не совсем так — есть приложения, в которых ничто не может заменить тулий. Средняя добыча этого металла составляет около 50 тонн в год, и, если бы он был самым бесполезным элементом, вряд ли его бы стали извлекать из руд, в которых он чрезвычайно рассеян. Тулий — моноизотопный элемент, единственный нуклид его в земной коре это стабильный 169Tm. Бомбардировка этого сорта атомов тулия нейтронами позволяет получить радиоактивный 170Tm с периодом полураспада в 128 дней. Радиоактивный тулий является хорошим источником рентгеновского излучения, из-за чего с 1950-х годов применяется как источник излучения в небольших по размеру рентгеновских аппаратах (использующихся, например, в стоматологии) и рентгеновских аппаратах для дефектоскопии — поиска повреждений в деталях и конструкциях. Как и многие другие лантаноиды тулий может применяться для легирования рабочих тел иттрий-алюминиевых лазеров, в данном случае польза от тулия в том, что его добавки позволяют перенастраивать рабочую частоту лазерного луча.
Ну и, наконец, тулий помог выиграть Нобелевскую премию по химии. В 1914 году первый образец чистого металлического тулия получил американский химик Теодор Уильям Ричардс, для этого он получил сверхчистый образец бромата тулия, проведя пятнадцать тысяч экспериментов по перекристаллизации. Такая высокая чистота соли тулия потребовалась Ричардс для уточнения молекулярной массы этого металла (Ричардс получил величину 168.93421 а.е.м.). Конечно, Нобелевским лауреатом стал не из-за рекордного количества перекристаллизаций и не за высокочистый тулий, а за то, что его атомная масса была лишь одной из многих, измеренных или уточнённых Ричардсом. Нобелевскую премию ученый получил «…за точное определение атомных масс большого числа химических элементов…», если точнее — Ричардс и его ученики определили и уточнили атомные массы 55 химических элементов, многие из полученных ими значений до сих приводятся в Периодической системе.
70. Иттербий
В опубликованной в 1971 году книге для учителей химии и изучающих её «Понимая химию», написанной Джоджем Пиментелом, написано: «У лантана одна устойчивая степень окисления в водных растворах, +3. За небольшим рядом исключений, это все, что можно рассказать о скучной химии остальных 14 элементов». Действительно, наиболее распространённой степенью окисления лантаноидов является +3, однако иттербий как раз относится к тем исключениям, о которых говорится в книге. Иттербий в соединениях может принимать степень окисления +2, его соединения являются сильными восстановителями, этот металл может реагировать с водой с выделением водорода.
Иттербий — последний из четырёх элементов, названных в честь Иттербю и выделенный из иттербита. Его в 1878 году обнаружил швейцарский химик Жан де Мариньяк, работая с солями эрбия. Де Мариньяк заметил, что при разложении того, что он считал нитратом эрбия, образуется два оксида — красный оксид эрбия и белый порошкообразный оксид нового элемента, который был назван иттербием. Конечно, де Мариньяк выделил не чистый оксид иттербия, очищенная форма была получена позже, в 1907 году.
Несмотря на то, что иттербий был открыт одним из последних лантаноидов, он является одним из самых распространённых элементов этого семейства. Он находится на сорок третьем месте по распространённости в земной коре, и его содержание больше, чем у олова, брома, урана или мышьяка. Металлический иттербий — хрупкий и ковкий металл, который быстро тускнеет на воздухе из-за реакции с компонентами воздуха и водой — иттербий более реакционноспособен, чем остальные лантаноиды. В земной коре имеется семь устойчивых изотопов с атомными массами от 168 до 176, кроме этого известно несколько радиоактивных изотопов иттербия, из которых наибольшее практическое значение имеет излучающий гамма-лучи нуклид 169Yb. Этот радиоизотоп применяется в портативных переносных рентгеновских аппаратах, для работы которых к тому же не нужно электрическое питание. Другой нуклид — 174Yb, рассматривается как потенциально полезный для изготовления высокоточных атомных часов. Атомные часты с этим изотопом иттербия могут быть точнее, чем цезиевые атомные часы, убегая или отставая на секунду за 100 миллионов лет.
Как и все лантаноиды, иттербий в большинстве своих соединений существует в виде иона Yb3+. Тот самый оксид иттербия, благодаря которому его обнаружил де Мариньяк (Yb2O3), применяется для изготовления специальных сортов стекла и керамики. Некоторые материалы, одновременно легированные иттербием и эрбием, могут преобразовывать невидимое человеческому глазу инфракрасное излучение в красный или зелёный цвет. Такие материалы-люминофоры в перспективе могут заменить европиевые или тербиевые люминофорные красители, с помощью которых защищают от подделки документы и денежные знаки. Для такой защиты чтобы установить подлинность купюры, её нужно будет освещать не ультрафиолетом, а инфракрасными лучами, под действием которых «тайные чернила» с иттербием будут светиться красным или зелёным.
Производные иттербия также проявляют люминесценцию в ближнем ИК-диапазоне (длина волны около 980 нм), их рассматривают как альтернативу существующим биологическим люминесцентным меткам, излучающим в видимой области. Это объясняется тем, что, хотя инфракрасное излучение и не воспринимается зрением человека, наши ткани более прозрачны для ИК-лучей, что, в свою очередь позволит применить ИК-визуализацию для того, чтобы заглянуть в ткань поглубже и раскрыть медикам или биологам более детальную информацию о протекании определённого биохимического процесса.
Ещё одна особенность иттербия в том, что его соединения — более эффективные катализаторы, чем аналогичные по структуре производные других лантаноидов. Соли иттербия катализируют целый ряд полезных трансформаций органических веществ, и всё более востребованы химической промышленностью.
71. Лютеций