Книги онлайн и без регистрации » Домашняя » Как устроена Вселенная - Брайан Хейбл

Как устроена Вселенная - Брайан Хейбл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8
Перейти на страницу:

Возвращаясь к искусственным спутникам, стоит отметить, что роль их неоспоримо ценна. Благодаря им мы можем узнавать первые погодные новости и любые геометеорологические подробности. А также получаем данные о состоянии Земли и ее природных ресурсах. Уже в 1960-ом году появилась возможность считывать информацию о Земле в виде черно-белых схем, показывающих очертания планеты визуально. Эти схемы давали слабое представление о деятельности человека, но стали, несомненно, важным шагом в астрономии и космонавтике. Была получена возможность практически беспрерывного наблюдения за Мировым Океаном и его просторами, сей погодной «колыбели».

Полеты на Луну стали еще одним прорывом человека. Первым аппаратом-луноходом был американский «Рейнджер-7», передавший на Землю множество качественных изображений еще перед посадкой, а также снимок кратеров диаметром до одного метра. Далее последовали высадки еще нескольких луноходов, изготовленных руками человека и вполне удачно «прилунившихся».

Следующей целью стала Венера, на которую из космического корабля был запущен спутник «Венера-1». Он прошел в тысяче километров от планеты и вышел на орбиту. Позже для более детального изучения поверхности была запущена «Венера-3», которая достигла своей цели 1 марта 1965 года. «Венера-4» в свою очередь представила точные характеристики по температуре и составу атмосферы планеты.

На этом изучение планет не остановилось, и уже 1 ноября 1962 года была запущена космическая станция «Марс-1» (СССР). Попытки запуска со стороны США увенчались успехом лишь на запуске «Маринер-4», которая указала на отсутствие магнитного поля у Марса. На поверхности были обнаружены кратеры, схожие с лунными. Были отправлены спутники и на другие планеты Солнечной системы, которые предоставили более чем исчерпывающую информацию. Это позволило продвинуться науке на шаг вперед.

Но этого оказалось мало! Человеческая жажда знаний не была, как, наверное, и не будет никогда удовлетворена, и первыми лунными экспедициями стали девять эшелонов, отправленные в период с 1969 по 1972 годы. Шесть из них завершились успешной высадкой астронавтов на поверхность Луны. В процессе программы было собрано достаточное для изучения количество пород и грунта, были сделаны открытия, из которых наиболее важны два – абсолютная стерильность Луны и отсутствие какой-либо формы жизни на ней. В завершение хотелось бы сказать, что человечество только-только вступило в четвертое десятилетие космической эры, но нас уже давно не удивляют такие чудеса как охватывающие всю Землю спутниковые системы – навигаторы.

Совершенно без удивления мы узнаем последние новости о многолетних работах и испытаниях, а новые открытия принимаем как должное. Нас не шокирует впервые увиденное ядро кометы и такие близкие снимки далеких планет и галактик. И хотя нас с уверенностью можно обвинить в пресыщенности, наша жажда знаний не угасает. За очень малое время космонавтика стала неотъемлемой частью нашей жизни, но не стоит забывать и о том, что нас ждет еще множество загадок и неизведанных тайн, которые нам только предстоит постичь.

Глава 3. Что ожидает нас в будущем? Популярные теории о строении Вселенной
3.1. Современная астрономия в лучших университетах мира. Чем заняты ученые в наше время?

В современном мире астрономию поглотила новая ветвь космической науки – астрофизика. Она появилась в 20 веке – веке великих открытий, когда ученые окончательно убедились, что космические законы – основа физических явлений и процессов на Земле. Случилось это благодаря великим людям и учёным – Альберту Эйнштейну. Николе Тесла и Томасу Эдисону.

Современные астрофизики до сих пор опираются на их работы, создают и проверяют самые дерзкие космические теории. В большинстве технических университетов и обсерваторий мира профессора астрономии и астрофизики наблюдают за звёздами, открывая новые галактики и звёздные системы.

Астрофизика состоит из трех основных отраслей: астроспектроскопия, наблюдательная и теоретическая астрофизика. Астроспектроскопия занимается тем, что наблюдает космические процессы с помощью спектрального анализа. Зачатки этой области науки появились еще во второй половине 19-го века, когда ученый Густав Кирхгофом сделал первый спектральный анализ Солнца. Это было важным шагом в данной науке, поскольку впервые можно было точно определить состав атмосферы Солнца.

Наблюдательная астрофизика делится еще на несколько отраслей: радиоастрономия занимается изучением волн, которые издают пылевые облака, также реликтовым излучением, которое является отголосками большого взрыва, пульсарами, квазарами и радиогалактиками. Инфракрасная астрономия проводит наблюдения за планетами, астероидами и космической пылью – то есть объектами, которые не имеют собственного свечения и только отображают свет. Оптическая астрономия – классическая. Рентгеновская, ультрафиолетовая и гамма-астрономия – области, которые наблюдают за образованием высокоэнергетических частиц.

Теоретическая астрофизика использует аналитические методы для разработки новых теорий и для подтверждения уже существующих. Астрофизики-теоретики исследуют не только процессы и объекты Вселенной, но и многие популярные теории. В сферу их работы входит физика черных дыр, эволюция и строение звезд, звездная динамика, эволюция галактик, строение Вселенной и космология.

Один из наиболее важных элементов в современной астрономии – теория относительности Альберта Эйнштейна. Собственно, на ней построены фундаментальные труды всех точных наук: физика, астрономия, высшая математика ссылаются на работы выдающегося ученого. Теория относительности – основа наших знаний о гравитационных волнах и расширении космоса.

Отдельно хочется сказать о космологии, разделе астрофизики, изучающем свойства Вселенной. Она началась с физики элементарных частиц и той же теории относительности. Альберт Эйнштейн предполагал, что Вселенная изотопна, однородна и стационарна. Из этого следовало, что Вселенная конечна, замкнута и искривлена в пространстве. Однако второй великий ученый того времени – Эдвин Хаббл с помощью своих исследований микроволновых излучений, а также благодаря теории нестационарной Вселенной русского ученого Александра Фридмана смог доказать, что Эйнштейн ошибался и Вселенная не статична, она постоянно увеличивается в размерах. Из этих работ возникла общепринятая в наше время Теория Большого Взрыва, доказательств которой становится всё больше.

Большой взрыв – это стандартная космологическая модель, которая объясняет появление Вселенной и ее жизнь на ранних стадиях. Эта теория считает, что вначале был взрыв микрочастиц, который породил Вселенную. Так, существует космический аппарат для изучения реликтового излучения, которое образовалось при Большом взрыве, а отголоски его до сих пор доходят до Земли. Он называется WMAP (Wilkinson Microwave Anisotropy Probe) (читается Ви-мап) и был разработан НАСА. Он помог ученым построить самую точную и детальную карту микроволнового излучения, которая показала, что 70 процентов космической материи еще не изучено.

3.2. Наиболее популярные космические теории

Из всех предсказываемых научными теориями объектов нашей Вселенной черные дыры пользуются наибольшей популярностью и производят самое сильное впечатление. Предположения и теории о существовании понятия «Черная дыра» высказывались задолго до публикации Эйнштейном его «Теории относительности», однако же убедительные данные о реальности этого явления получены совсем недавно. Долгое время считалось, что присутствие черных дыр общей теорией относительности допускается, хотя нет, уместнее будет сказать, предсказывается, в настоящем мире такие объекты просто не могли бы образоваться.

1 2 3 4 5 6 7 8
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?