Кто изобрел современную физику? От маятника Галилея до квантовой гравитации - Геннадий Горелик
Шрифт:
Интервал:
Закладка:
Видный британский астрофизик Эдвард Милн, например, чтобы не переучиваться, придумал в 1932 году замену релятивистской космологии: шарообразное скопление галактик разлеталось в окружающую пустоту по законам Ньютоновой физики. Так он получил формулу разлета, сопоставимую с законом красного смещения, но, как быть с перигелием Меркурия и с отклонением света, «теория» Милна не знала и знать не желала. Зато не было проблемы «сотворения мира» из точки. Что случилось в начале разлета, было неясно, но пространству и времени ничего не угрожало.
Сопоставлять наблюдения с кустарными формулами Милна наравне с уравнениями Эйнштейна не могли астрофизики, широко смотрящие на мир. Двое из них были особенно компетентны обсуждать закон красного смещения.
Этот бельгийский астрофизик, прежде чем заняться наукой, стал католическим священником, всегда ходил в сутане, а свои статьи подписывал «аббат Ж. Леметр». Легко представить себе, какие мысли возникали у его коллег при первом знакомстве. Но даже и после знакомства нелегко было признать, что в его научных текстах все доводы подчинены обычной научной логике. Проще было его смелые идеи связать с сутаной, чем в них вдуматься.
Загадкой истории остается то, что закон красного смещения, называемый соотношением Хаббла, Леметр открыл за два года до Хаббла — в 1927 году. И лишь затем узнал, что динамическую космологию, с которой он связал наблюдаемый разлет галактик, открыл Фридман еще в 1922-м.
Жорж Леметр
Определился с профессией Леметр позже обычного, поскольку в его юношеские планы вторглась мировая война. Он изучал инженерные науки в Католическом университете, когда его мобилизовали в армию. Служил в артиллерии, за боевые заслуги был награжден орденом. После войны изучал математику, физику, астрономию и… готовился к рукоположению. Приняв сан священника, в 1923 году поехал в Англию изучать астрофизику под руководством Эддингтона, а затем в США — в ту самую Гарвардскую обсерваторию, где открытием ритма цефеид начался выход за пределы нашей Галактики. Со знанием первых плодов внегалактической астрономии вернулся в Бельгию и стал профессором в родном университете.
В 1927 году Леметр опубликовал свою ныне самую знаменитую, а тогда совершенно не замеченную статью. Опубликовал он ее на французском языке в неведомом бельгийском журнале — Бельгия отнюдь не была великой научной державой, а главными языками тогдашней астрофизики были английский и немецкий.
«Однородная Вселенная с постоянной массой и увеличивающимся радиусом объясняет радиальную скорость внегалактических туманностей» — длинноватое название статьи говорит и об астрономическом поводе, и о главном результате. Автор использовал статью Хаббла 1926 года о расстояниях до «внегалактических туманностей», то бишь других галактик, и статью коллеги Хаббла по обсерватории — о скоростях галактик. Заметив связь этих величин, Леметр оценил коэффициент разлета галактик (ныне называемый коэффициентом Хаббла) и получил около 600 км/сек . Мпк — величина того же порядка, что у Хаббла два года спустя. При этом Леметр теоретически объяснил удивительный астрономический факт на основе нового, как он думал, решения уравнений Эйнштейна.
Опубликовав работу в малоизвестном журнале, Леметр тем не менее старался донести ее до первых лиц в тогдашней астрофизике. Он послал статью Эддингтону, но тот ее не прочитал (или не понял). Когда в 1927 году в Бельгию приехал Эйнштейн, Леметр встретился с ним и рассказал о своей работе. Эйнштейн указал ему на работу Фридмана, но, хоть и не имел математических доводов против, отвергнул физическую реальность расширяющейся Вселенной. По свидетельству Леметра, Эйнштейн ему сказал: «Математика у вас правильна, но физика отталкивающая».
Наконец, в 1928 году, Леметр отправился в соседнюю Голландию на конгресс Международного астрономического союза, встретился с его президентом де Ситтером, «космологом № 2», и попытался рассказать ему о своей работе. Увы, то ли президент был слишком занят конгрессом, то ли подобно Эйнштейну не допускал новую возможность, то ли в силу первого и второго просто не понял молодого теоретика-священника, говорящего о разбегании галактик.
На этот конгресс приехал из Америки и Хаббл. Нет свидетельств о его контакте с Леметром, но идея связать расстояния и скорости галактик слишком проста, чтобы исключить возможность какой-то неявной, опосредованной подсказки. Впрочем, простота идеи делает вполне вероятной и независимость двух открытий. Вскоре после возвращения с конгресса Хаббл опубликовал свою знаменитую статью. Так или иначе, роль Хаббла в открытии основного факта космологии несомненна — его измерения внегалактических расстояний, как и измерения скоростей Слайфером, были отправным пунктом для Леметра.
Именно астрономический авторитет Хаббла утвердил закон красного смещения как реально наблюдаемый факт. На обсуждении этого факта в Англии при участии Эддингтона и де Ситтера был признан теоретический тупик. Узнав об этом, Леметр вновь послал Эддингтону свою статью 1927 года. Тот наконец понял, организовал публикацию английского перевода статьи в главном астрономическом журнале и в своем комментарии назвал ее «блестящим решением» космологической проблемы.
В английском переводе, правда, удалены абзацы, в которых Леметр «преждевременно» открыл закон красного смещения, то есть соотношение Хаббла. Люди, склонные к интригам, усматривают в этом какие-то тайные мотивы Эддингтона и нездоровые амбиции Хаббла. Такое подозрение, однако, не вяжется с тем, как Эддингтон превозносил Леметра, который к тому же сам одобрил сокращенный перевод своей статьи. Более простое объяснение состоит в том, что Эддингтон и Леметр хотели донести до коллег новое космологическое решение, а не затеять приоритетный спор по поводу уже признанного астрономического открытия — признанного благодаря авторитету Хаббла в астрономии.
Решение Леметра, подкрепленное соотношением Хаббла — Леметра, признали теперь также де Ситтер и Эйнштейн. Признали, собственно, то, что эйнштейновская теория гравитации может описать разлет галактик как расширение самого пространства-времени.
Почему же выдающиеся теоретики так долго не принимали простое следствие теории, которую все они признавали истинной? Почему Эйнштейн, еще в 1923 году признавший результаты Фридмана «правильными и проливающими новый свет», не находил им места в своей картине мира вплоть до публикации Хаббла 1929 года?
Потому что даже теоретическая физика — наука экспериментальная, и в ней факты природы бывают весомей задушевных идей. И потому что физическое понятие Вселенной оказалось гораздо глубже представления обо «всем видимом мире».
Космологии повезло, что сперва Эйнштейн нашел одно-единственное космологическое решение — одно решение для единственной Вселенной. Второе решение де Ситтера легко было забраковать, поскольку в нем не было никакого вещества, сплошная пустота. Но Фридман предложил выбор из бесконечного семейства космологических решений, каждое отвечало набору из трех величин: величина космологической постоянной, плотность вещества и скорость расширения в некий момент времени. Возможные типы космологических сценариев очень различались: вечное расширение, начинающееся с нулевого или конечного радиуса; расширение, переходящее в сжатие; сжатие до нуля или до конечного значения радиуса. Что делать с этим трижды бесконечным разнообразием космологий, было непонятно. При отсутствии наблюдаемых ориентиров действовала лишь личная интуиция, и она сказала Эйнштейну «нет», возможно, еще и потому, что Фридман из всего многообразия космологий выделил ту, которая начиналась с нулевого радиуса — «от сотворения мира».