Книги онлайн и без регистрации » Домашняя » Сигнал и Шум. Почему одни прогнозы сбываются, а другие - нет - Нейт Сильвер

Сигнал и Шум. Почему одни прогнозы сбываются, а другие - нет - Нейт Сильвер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 42 43 44 45 46 47 48 49 50 ... 175
Перейти на страницу:

При ближайшем рассмотрении частицы, которые стремился выявить Лаплас, начинают вести себя подобно волнам: возникает впечатление, что они не занимают никакого постоянного положения. Как можно предсказать, в каком направлении будет двигаться объект, если вы даже не знаете, где именно он находится? Разумеется, это невозможно. И именно эта мысль и заложена в основу знаменитого принципа неопределенности, разработанного физиком-теоретиком Вернером Гейзенбергом{250}. Физики трактуют принцип неопределенности по-разному, однако он, по сути, утверждает, что постулат Лапласа не может быть верен в буквальном смысле. Идеальные предсказания невозможны, если природа сама по себе развивается случайным образом.

К счастью, для изучения погоды нам не нужна квантовая механика. Погодные изменения происходят на молекулярном (а не атомном) уровне, и сами молекулы слишком велики для того, чтобы на них оказывала какое-то значимое влияние квантовая физика. Более того, мы уже довольно давно поняли, что изменения погоды вполне подчиняются законам химии и ньютоновской физики.

А что касается обновленной версии Демона Лапласа, то можно сказать следующее. Если мы знаем положение каждой молекулы в земной атмосфере (такое утверждение куда более скромное, чем стремление к знанию местоположения каждого атома во Вселенной), то можем ли мы создавать идеальные прогнозы погоды? Или же в погоде тоже изначально заложен некий элемент случайности?

Матрица

Мы уже давно умеем делать прогнозы погоды на основе чисто статистических наблюдений. Насколько велика вероятность того, что завтра пойдет дождь, с учетом того, что он шел сегодня? Метеоролог мог бы изучить все такие случаи, связанные с дождями, собранные в его базе данных, и дать ответ на этот вопрос. Или же он мог бы изучить долгосрочные средние значения и сказать нам о том, что в марте в Лондоне дождь идет примерно 35 % времени{251}.

Проблема состоит в том, что предсказания такого рода не особенно полезны – они недостаточно точны для того, чтобы порекомендовать вам взять с собой с утра зонтик, не говоря уже о прогнозировании движения урагана. Поэтому метеорологи пошли по иному пути. Вместо статистической модели они хотели создать живую и дышащую модель, имитирующую физические процессы, которые управляют погодой.

Однако наша способность делать прогнозы погоды на основе расчетов куда слабее, чем наше теоретическое понимание. Мы знаем, какие уравнения надо решить, и примерно представляем себе верные ответы, однако нам недостаточно быстродействия для того, чтобы произвести расчеты для каждой молекулы в земной атмосфере. Вместо этого нам приходится заниматься аппроксимацией.

Самый интуитивно понятный метод для этого случая – упрощение проблемы за счет разбиения атмосферы на конечное количество наборов пикселей – метеорологи часто называют такую систему матрицей, решеткой или сеткой. По данным Лофта, первые заслуживающие внимания попытки работы в этом направлении были сделаны в 1916 г. Льюисом Фраем Ричардсоном, знаменитым британским физиком. Ричардсон хотел определить погоду над Северной Германией в определенное время – в 13 ч 20 мая 1910 г. Строго говоря, это нельзя назвать предсказанием, поскольку этот день уже прошел. Однако в распоряжении Ричардсона имелось много данных – о температуре, атмосферном давлении и скорости ветра, – собранных германским правительством. И у него было достаточно времени, поскольку он служил медиком-добровольцем и оставался без дел в перерывах между артиллерийскими канонадами. Поэтому Ричардсон разбил территорию Германии на ряд двумерных секторов размерами по три градуса широты (около 340 км) на три градуса долготы (рис. 4.1). Затем он приступил к работе, пытаясь решить химические уравнения, определявшие погоду в каждом секторе, и то, каким образом они влияют на погоду в соседних.

К сожалению, эксперимент Ричардсона бесславное провалился{252} – он «предсказал» серьезный рост атмосферного давления, в реальности же в тот день это не наблюдалось. Однако Ричардсон тем не менее опубликовал свои результаты. Этот метод определенно казался правильным методом предсказания погоды – Ричардсон считал, что следует не полагаться на грубые статистические приближения, а выявить некие основные принципы и воспользоваться глубоким теоретическим пониманием поведения системы.

Сигнал и Шум. Почему одни прогнозы сбываются, а другие - нет

Рис. 4.1. Матрица Ричардсона – прообраз современной системы прогнозирования погоды

Проблема состояла в том, что метод Ричардсона требовал выполнения огромного объема работы. Для решения поставленных им задач были нужны компьютеры. Как вы увидите в главе 9, компьютеры не каждую из поставленных им задач могут выполнить и далеко не всегда служат панацеей в процессе предсказания. Однако компьютеры идеальны с точки зрения вычислений – то есть быстрого и точного многократного повторения одних и тех же арифметических задач. Они отлично подходят для решения шахматных задач, подчиняющихся довольно простым правилам, но сложных с точки зрения вычислений. Сходные задачи имеются и в области метеорологии.

Первый компьютерный прогноз погоды создал в 1950 г. математик Джон фон Нейман, который использовал для этого машину, способную осуществлять порядка 5000 вычислений в секунду{253}. Расчет происходил намного быстрее, чем мог сделать Ричардсон с карандашом и листом бумаги на французском деревенском поле. Тем не менее прогноз оказался неудачным, и его результаты оказались не намного точнее обычной случайной догадки.

1 ... 42 43 44 45 46 47 48 49 50 ... 175
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. В коментария нецензурная лексика и оскорбления ЗАПРЕЩЕНЫ! Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?