Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд
Шрифт:
Интервал:
Закладка:
Короче говоря, во Вселенной обнаружились три большие проблемы. Во-первых, противоречивые свидетельства относительно геометрии пространства: открытое оно, закрытое или плоское. Во-вторых, Вселенная оказалась моложе, чем самые старые звёзды. И в-третьих, мать всех проблем: отличается ли значение космологической постоянной от нуля, как первоначально считал Эйнштейн, и если нет, то почему? Зададим ещё один вопрос: связаны ли между собой эти проблемы? Разумеется, связаны.
Одним из возможных решений перечисленных выше проблем может оказаться исправление общей теории относительности. И некоторые физики, ухватившись за это предположение, с энтузиазмом принялись вносить изменения в теорию, которые проявлялись бы в виде возникновения дополнительных сил на больших расстояниях. Лично я не нахожу ничего конструктивного в таких попытках. Обычно они чрезвычайно надуманные, часто нарушают фундаментальные принципы и, на мой взгляд, без них можно обойтись.
Можно ещё предположить, что астрономы слишком переоценивают точность получаемых ими данных. Вы можете делать ставки против экспериментальных данных, противоречащих общим ожиданиям. Сырые данные почти всегда неточны, и дальнейшие эксперименты обычно подтверждают это. В этом случае я бы поставил против астрономических данных, а не против теории. Но, боюсь, я бы проиграл. По мере того как точность наблюдений растёт, новые результаты только подтверждают тот факт, что наблюдения противоречат теории. Что-то тут действительно глубоко неправильно.
Тем не менее есть одна возможность, которая не лежит на поверхности. А что, если значение космологической постоянной всё же отлично от нуля? Что, если величайшая ошибка Эйнштейна на самом деле была одним из его величайших открытий? Может ли космологическая постоянная разрешить наши противоречия?
Когда мы вычисляли, достаточно ли наблюдаемой массы Вселенной, чтобы сделать её плоской или закрытой, мы полностью проигнорировали возможность существования энергии вакуума. В мире с ненулевой космологической постоянной это было бы ошибкой. Уравнения Эйнштейна говорят, что на кривизну пространства влияют все виды энергии. Энергия и масса эквивалентны, поэтому энергия вакуума тоже должна учитываться при расчёте средней плотности Вселенной. Обычная и тёмная материя вместе составляют около 30 % массы, необходимой, чтобы сделать Вселенную плоской или закрыть её. Очевидный выход – восполнить недостающие 70 % за счёт космологической постоянной. Это будет означать, что плотность энергии вакуума примерно в два с половиной раза больше суммарной плотности обычной и тёмной материи, или около 30 масс протона на кубический метр.
Поскольку космологическая постоянная добавляет силу отталкивания к закону всемирного тяготения, её наличие должно влиять на характер расширения Вселенной. В начальной фазе расширения влияние космологической постоянной практически не заметно, но по мере увеличения расстояния между галактиками сила отталкивания, создаваемая космологической постоянной, становится сопоставимой с силой притяжения. В конце концов космологическая постоянная способна привести к хаббловскому расширению Вселенной со всё увеличивающейся скоростью.
Обратим наш кинофильм вспять. Теперь галактики падают друг на друга, но сила отталкивания между ними ослабевает с уменьшением расстояния, а значит, наша оценка относительных скоростей галактик окажется завышенной, особенно для конечной стадии падения. Если не учесть вклад энергии вакуума, оценка времени, необходимого для падения всех галактик в общую кучу, окажется заниженной. Другими словами, если бы в закон тяготения действительно входила космологическая постоянная, а мы бы не знали об этом, то наш расчёт привёл бы к возрасту Вселенной меньшему, чем на самом деле. И в самом деле, если мы добавим к общей массе Вселенной энергию вакуума, эквивалентную 30 массам протона на кубический метр, то вместо прежних 10 миллиардов лет получим оценку возраста Вселенной в 14 миллиардов лет. А этот возраст уже прекрасно согласуется с данными наблюдений, поскольку он на миллиард лет превышает возраст самых старых звёзд.
Эти доводы в пользу существования ненулевой космологической постоянной настолько важны, что я хочу их повторить. Итак, предположение о существовании небольшой космологической постоянной, добавляющей 70 % к энергии Вселенной, решает две крупнейшие загадки космологии. Во-первых, этой дополнительной энергии достаточно, чтобы сделать Вселенную плоской, что снимает противоречие между наблюдаемой нулевой кривизной пространства и тем фактом, что известной массы Вселенной недостаточно, чтобы сделать её плоской.
Второй парадокс, снимаемый космологической постоянной, – возраст самых старых звёзд, которые оказываются старше Вселенной. Удивительно, что добавка тех же самых семидесяти процентов энергии вакуума, которые необходимы для того, чтобы сделать Вселенную плоской, приводит к тому, что Вселенная оказывается на миллиард лет старше самых старых звёзд.
В последние десятилетия нам удалось значительно повысить точность датировки основных событий в жизни Вселенной. Сегодня мы знаем историю Вселенной очень подробно. В этом нам помог особый класс событий, называемых вспышками сверхновых I типа. Вспышка сверхновой – это космический катаклизм, в ходе которого умирающая звезда коллапсирует под действием собственного гравитационного поля, превращаясь в нейтронную звезду и освобождая колоссальное количество энергии. В максимуме вспышки сверхновая сияет, как целая галактика. Поэтому вспышки сверхновых легко регистрируются даже в самых удалённых галактиках.
Все сверхновые представляют интерес для науки, но вспышки сверхновых I типа имеют одну существенную особенность. Они происходят в тесных двойных системах, где один из компонентов представляет собой обычную звезду, а второй является белым карликом. Белый карлик – умирающая звезда, массы которой недостаточно, чтобы сколлапсировать в нейтронную звезду.
В тесной двойной системе часть вещества обычной звезды постепенно перетекает на белый карлик, медленно увеличивая его массу. Как только масса белого карлика достигнет определённого предела, при котором он уже не может оставаться стабильным, белый карлик коллапсирует в нейтронную звезду; этот процесс сопровождается вспышкой сверхновой I типа. Поскольку финальный коллапс и сопровождающая его вспышка происходят при достижении белым карликом строго определённой массы, считается, что энергия, выделяемая при вспышке, всегда одна и та же и не зависит от начальных масс белого карлика или его компаньона. Поэтому астрономы уверены, что все сверхновые I типа имеют одну и ту же светимость.[55] Это позволяет астрономам определять расстояния до сверхновых I типа с высокой точностью.