Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу
Шрифт:
Интервал:
Закладка:
Самое интересное, если подключить этот pn-переход к батарее, это позволит повышать или понижать потенциальный барьер между областями n-типа и р-типа. Если понизить потенциал области р-типа, то он упадет еще сильнее, так что электронам и дыркам станет еще сложнее двигаться по сочленению. Но повышение потенциала области р-типа (или ослабление потенциала области n-типа) подобно понижению плотины, сдерживающей воду. Электроны области n-типа немедленно начинают затоплять область р-типа, а дырки движутся столь же массово, но в противоположном направлении. Таким образом pn-переход может использоваться как диод: он может обеспечить движение тока, правда, только в одном направлении[43]. Но диоды не главный предмет нашего интереса.
Рис. 9.4 – это набросок устройства, изменившего мир, – транзистора. Он показывает, что произойдет, если сделать своеобразный сэндвич – слой кремния p-типа разместить между двумя слоями кремния n-типа. Здесь нам хорошую службу сослужит объяснение про диод, потому что идеи примерно те же самые. Электроны движутся из областей n-типа в области р-типа, а дырки движутся в обратном направлении, пока из-за падений потенциала в сочленениях между слоями такое взаимопроникновение не прекращается. В изолированном виде можно представить себе существование двух резервуаров электронов, разделенных барьером, и один резервуар дырок, зажатый между ними.
Рис. 9.4. Транзистор
Самое интересное происходит, когда мы прикладываем напряжение к области n-типа с одной стороны и к области р-типа в середине. Приложение положительного напряжения заставляет подняться плоскую часть кривой слева (на величину Vc) и плоский участок в области р-типа (на величину Vb). Это показано сплошной линией на центральной диаграмме. Такой способ расположения потенциалов имеет серьезные последствия: создается настоящий водопад электронов, которые преодолевают сниженный центральный барьер и направляются в область n-типа слева (напомним, что электроны текут «в горку»). Если Vc больше, чем Vb, то поток электронов будет односторонним и электроны слева не смогут преодолеть область р-типа. Как бы безобидно ни звучали эти фразы, но мы только что описали электронный клапан. Итак, посредством применения напряжения к области р-типа мы можем включать и выключать электрический ток.
И вот завершение: мы готовы к полному осознанию потенциала скромного транзистора. На рис. 9.5 снова демонстрируем действие транзистора через параллели с текущей водой. Ситуация «закрытого клапана» полностью аналогична тому, что происходит в области р-типа без всякого напряжения. Применение напряжения соответствует открытию клапана. Под двумя трубками мы изобразили символ, который обычно используется для транзистора, и с известной долей воображения можно утверждать, что он даже похож на клапан.
Рис. 9.5. Аналогия транзистора с водяными трубками
Что можно сделать с клапанами и трубками? Мы можем создать компьютер, а если трубки и клапаны достаточно малы, то вполне серьезный компьютер.
Рис. 9.6 представляет собой концептуальную иллюстрацию того, как можно использовать трубку с двумя клапанами и создать нечто под названием «логический вентиль». У трубки слева оба клапана открыты, в результате снизу вытекает вода. У трубки в центре и трубки справа один клапан открыт и один клапан закрыт, так что, очевидно, вода снизу не выливается. Мы решили не изображать четвертый вариант – когда оба клапана закрыты. Если обозначить вытекание воды из днища трубок цифрой 1, отсутствие такого вытекания – цифрой 0, а также назначить для открытого клапана цифру 1, а для закрытого цифру 0, то можно изобразить действие четырех трубок (трех нарисованных и одной ненарисованной) уравнениями 1 и 1 = 1, 1 и 0 = 0, 0 и 1 = 0 и 0 и 0 = 0. Слово «и» – логический оператор, который используется здесь в техническом смысле: система из трубки и клапанов, которую мы только что описали, называется «вентиль и». Этот вентиль разрешает два ввода (состояние двух клапанов) и возвращает единственное значение (течет вода или нет), при этом единственный способ получить на выходе 1 – это ввести оба раза 1. Надеемся, теперь понятно, как можно с помощью пары подсоединенных транзисторов сделать «вентиль и» – принципиальная схема дана на этом рисунке.
Рис. 9.6. «Вентиль и», созданный с помощью водяной трубы и двух клапанов (слева) и пары транзисторов (справа). Второй вариант гораздо лучше подходит для создания компьютеров
Мы видим, что ток начинает течь только в том случае, если оба транзистора включены (то есть если приложить положительное напряжение к областям р-типа, Vb1 и Vb2), а именно это и приводит к появлению «вентиля и».
Другая логическая схема изображена на рис. 9.7. Здесь вода будет вытекать снизу, если открыт любой из клапанов, и не будет вытекать, если оба клапана закрыты. Это называется «вентилем или», и ее можно описать аналогично предыдущей: 1 или 1 = 1, 1 или 0 = 1, 0 или 1 = 1 и 0 или 0 = 0. Соответствующая схема транзистора тоже показана на рисунке. Ток пойдет во всех случаях, кроме того, когда оба транзистора выключены.
Рис. 9.7. «Вентиль или», созданный при помощи двух водяных труб и двух клапанов (слева) или пары транзисторов (справа)
Именно на таких логических схемах и основана сила цифровых электронных приборов. Эти скромные строительные кирпичики дают сочетания логических схем, которые можно использовать для создания сколь угодно сложных алгоритмов. Можно назначить список вводимых значений в некоторых логических цепях (набор нулей и единиц), прогнать эти значения через некую изощренную конфигурацию транзисторов и получить на выходе список других значений (другой набор нулей и единиц). Таким образом мы создаем цепи для совершения сложнейших математических расчетов или принятия решений, основанных на том, какие клавиши нажимаются на клавиатуре. Затем мы снабжаем этой информацией устройство, которое выводит соответствующие символы на экран, или запускаем сигнал тревоги, если кто-то вламывается в дом, или посылаем поток текстовых символов по оптоволоконному кабелю (при этом они представлены в виде бинарного кода) на другой конец мира, или… да что угодно, потому что практически любой электронный прибор в нашем распоряжении под завязку набит транзисторами.